These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35527733)
1. A study on coconut fatty acid diethanolamide-based polyurethane foams. Leng X; Li C; Cai X; Yang Z; Zhang F; Liu Y; Yang G; Wang Q; Fang G; Zhang X RSC Adv; 2022 Apr; 12(21):13548-13556. PubMed ID: 35527733 [TBL] [Abstract][Full Text] [Related]
2. Production of Bio-Based Polyol from Coconut Fatty Acid Distillate (CFAD) and Crude Glycerol for Rigid Polyurethane Foam Applications. Salcedo MLD; Omisol CJM; Maputi AO; Estrada DJE; Aguinid BJM; Asequia DMA; Erjeno DJD; Apostol G; Siy H; Malaluan RM; Alguno AC; Dumancas GG; Lubguban AA Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570156 [TBL] [Abstract][Full Text] [Related]
3. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Kim HJ; Jin X; Choi JW Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939 [TBL] [Abstract][Full Text] [Related]
5. A novel reaction mechanism for the synthesis of coconut oil-derived biopolyol for rigid poly(urethane-urea) hybrid foam application. Dingcong RG; Malaluan RM; Alguno AC; Estrada DJE; Lubguban AA; Resurreccion EP; Dumancas GG; Al-Moameri HH; Lubguban AA RSC Adv; 2023 Jan; 13(3):1985-1994. PubMed ID: 36712635 [TBL] [Abstract][Full Text] [Related]
6. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties. Lee JH; Kim SH; Oh KW Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983 [TBL] [Abstract][Full Text] [Related]
7. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. Członka S; Strąkowska A; Kairytė A Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545580 [TBL] [Abstract][Full Text] [Related]
8. From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil. Polaczek K; Kurańska M; Malewska E; Czerwicka-Pach M; Prociak A Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763416 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable, Flame-Retardant, and Bio-Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application. Borowicz M; Paciorek-Sadowska J; Lubczak J; Czupryński B Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31694273 [TBL] [Abstract][Full Text] [Related]
10. Upgrading Sustainable Polyurethane Foam Based on Greener Polyols: Succinic-Based Polyol and Mannich-Based Polyol. de Luca Bossa F; Verdolotti L; Russo V; Campaner P; Minigher A; Lama GC; Boggioni L; Tesser R; Lavorgna M Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708562 [TBL] [Abstract][Full Text] [Related]
11. High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols. Kirpluks M; Vanags E; Abolins A; Michalowski S; Fridrihsone A; Cabulis U Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344553 [TBL] [Abstract][Full Text] [Related]
12. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam. Liao YH; Su YL; Chen YC Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205593 [TBL] [Abstract][Full Text] [Related]
13. Effect of Evening Primrose Oil-Based Polyol on the Properties of Rigid Polyurethane⁻Polyisocyanurate Foams for Thermal Insulation. Paciorek-Sadowska J; Borowicz M; Czupryński B; Isbrandt M Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961260 [TBL] [Abstract][Full Text] [Related]
14. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Kurańska M; Barczewski R; Barczewski M; Prociak A; Polaczek K Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322670 [TBL] [Abstract][Full Text] [Related]
15. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608 [TBL] [Abstract][Full Text] [Related]
16. Advances in Low-Density Flexible Polyurethane Foams by Optimized Incorporation of High Amount of Recycled Polyol. Kiss G; Rusu G; Bandur G; Hulka I; Romecki D; Péter F Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073296 [TBL] [Abstract][Full Text] [Related]
17. Effect of Selected Bio-Components on the Cell Structure and Properties of Rigid Polyurethane Foams. Prociak A; Kucała M; Kurańska M; Barczewski M Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765513 [TBL] [Abstract][Full Text] [Related]
18. Development of High-Performance Coconut Oil-Based Rigid Polyurethane-Urea Foam: A Novel Sequential Amidation and Prepolymerization Process. Hipulan LNA; Dingcong RG; Estrada DJE; Dumancas GG; Bondaug JCS; Alguno AC; Bacosa HP; Malaluan RM; Lubguban AA ACS Omega; 2024 Mar; 9(11):13112-13124. PubMed ID: 38524448 [TBL] [Abstract][Full Text] [Related]
19. Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams. Olszewski A; Kosmela P; Vēvere L; Kirpluks M; Cabulis U; Piszczyk Ł Sci Rep; 2024 Jan; 14(1):812. PubMed ID: 38191496 [TBL] [Abstract][Full Text] [Related]
20. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation. Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]