These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35527803)

  • 1. Recurrence network analysis of design-quality interactions in additive manufacturing.
    Chen R; Rao P; Lu Y; Reutzel EW; Yang H
    Addit Manuf; 2021; 39():. PubMed ID: 35527803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-Sigma Quality Management of Additive Manufacturing.
    Yang H; Rao P; Simpson T; Lu Y; Witherell P; Nassar AR; Reutzel E; Kumara S
    Proc IEEE Inst Electr Electron Eng; 2021 Apr; 109(4):. PubMed ID: 34248180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review.
    Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Critical Review on Effect of Process Parameters on Mechanical and Microstructural Properties of Powder-Bed Fusion Additive Manufacturing of SS316L.
    Gor M; Soni H; Wankhede V; Sahlot P; Grzelak K; Szachgluchowicz I; Kluczyński J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modular testbed for mechanized spreading of powder layers for additive manufacturing.
    Oropeza D; Roberts R; Hart AJ
    Rev Sci Instrum; 2021 Jan; 92(1):015114. PubMed ID: 33514203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knowledge-Based Design Algorithm for Support Reduction in Material Extrusion Additive Manufacturing.
    Ahn J; Doh J; Kim S; Park SI
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Role of Epitaxial Grain Structure of the Prior β Phase and Associated Fiber Texture on the Strength Characteristics of Ti-6Al-4V Produced via Additive Manufacturing.
    Sangid MD; Nicolas A; Kapoor K; Fodran E; Madsen J
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additively manufactured Ti-6Al-4V thin struts via laser powder bed fusion: Effect of building orientation on geometrical accuracy and mechanical properties.
    Murchio S; Dallago M; Zanini F; Carmignato S; Zappini G; Berto F; Maniglio D; Benedetti M
    J Mech Behav Biomed Mater; 2021 Jul; 119():104495. PubMed ID: 33831659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Thin-Wall Structures with a Femtosecond Laser and Stainless Steel Powder.
    Ramon-Conde I; Omeñaca L; Gomez-Aranzadi M; Castaño E; Rodriguez A; Olaizola SM
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing.
    Abdulhameed O; Mian SH; Moiduddin K; Al-Ahmari A; Ahmed N; Aboudaif MK
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive manufacturing of biodegradable metals: Current research status and future perspectives.
    Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH
    Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Roughness-Surface Additive Manufacturing of Metal-Wire Feeding with Small Power.
    Li B; Wang B; Zhu G; Zhang L; Lu B
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foundational Investigation on the Characterization of Porosity and Fiber Orientation Using XCT in Large-Scale Extrusion Additive Manufacturing.
    Tagscherer N; Schromm T; Drechsler K
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Build-Plate for Metal Additive Manufacturing Processes.
    Hehr A; Norfolk M; Kominsky D; Boulanger A; Davis M; Boulware P
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: clinical implications.
    Ide Y; Nayar S; Logan H; Gallagher B; Wolfaardt J
    Odontology; 2017 Jan; 105(1):108-115. PubMed ID: 26995273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying uncertainty in laser powder bed fusion additive manufacturing models.
    Lopez F; Witherell P; Lane B
    J Mech Des N Y; 2016 Nov; 138(11):. PubMed ID: 38523817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standard method for microCT-based additive manufacturing quality control 1: Porosity analysis.
    du Plessis A; Sperling P; Beerlink A; Tshabalala L; Hoosain S; Mathe N; le Roux SG
    MethodsX; 2018; 5():1102-1110. PubMed ID: 30271722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.