These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 3552787)
1. Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Wessel GM; McClay DR Dev Biol; 1987 May; 121(1):149-65. PubMed ID: 3552787 [TBL] [Abstract][Full Text] [Related]
2. The role of lysyl oxidase and collagen crosslinking during sea urchin development. Butler E; Hardin J; Benson S Exp Cell Res; 1987 Nov; 173(1):174-82. PubMed ID: 2890532 [TBL] [Abstract][Full Text] [Related]
3. Transcription of the Spec 1-like gene of Lytechinus is selectively inhibited in response to disruption of the extracellular matrix. Wessel GM; Zhang W; Tomlinson CR; Lennarz WJ; Klein WH Development; 1989 Jun; 106(2):355-65. PubMed ID: 2591320 [TBL] [Abstract][Full Text] [Related]
4. An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo. Berg LK; Chen SW; Wessel GM Development; 1996 Feb; 122(2):703-13. PubMed ID: 8625821 [TBL] [Abstract][Full Text] [Related]
5. An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation. Ingersoll EP; Ettensohn CA Dev Biol; 1994 Jun; 163(2):351-66. PubMed ID: 7515360 [TBL] [Abstract][Full Text] [Related]
6. PDGF-BB and TGF-alpha rescue gastrulation, spiculogenesis, and LpS1 expression in collagen-disrupted embryos of the sea urchin genus Lytechinus. Ramachandran RK; Seid CA; Lee H; Tomlinson CR Mech Dev; 1993 Nov; 44(1):33-40. PubMed ID: 8155573 [TBL] [Abstract][Full Text] [Related]
7. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo. Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028 [TBL] [Abstract][Full Text] [Related]
8. Sea urchin arylsulfatase, an extracellular matrix component, is involved in gastrulation during embryogenesis. Mitsunaga-Nakatsubo K; Akimoto Y; Kawakami H; Akasaka K Dev Genes Evol; 2009 Jun; 219(6):281-8. PubMed ID: 19458963 [TBL] [Abstract][Full Text] [Related]
9. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo. Huggins LG; Lennarz WJ Dev Growth Differ; 2001 Aug; 43(4):415-24. PubMed ID: 11473548 [TBL] [Abstract][Full Text] [Related]
10. Expression of type IV collagen-degrading activity during early embryonal development in the sea urchin and the arresting effects of collagen synthesis inhibitors on embryogenesis. Karakiulakis G; Papakonstantinou E; Maragoudakis ME; Misevic GN J Cell Biochem; 1993 May; 52(1):92-106. PubMed ID: 8320279 [TBL] [Abstract][Full Text] [Related]
11. Localization and characterization of blastocoelic extracellular matrix antigens in early sea urchin embryos and evidence for their proteolytic modification during gastrulation. Vafa O; Goetzl L; Poccia D; Nishioka D Differentiation; 1996 Jun; 60(3):129-38. PubMed ID: 8766593 [TBL] [Abstract][Full Text] [Related]
12. Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo. Benson S; Rawson R; Killian C; Wilt F Mol Reprod Dev; 1991 Jul; 29(3):220-6. PubMed ID: 1931040 [TBL] [Abstract][Full Text] [Related]
13. Archenteron elongation in the sea urchin embryo is a microtubule-independent process. Hardin JD Dev Biol; 1987 May; 121(1):253-62. PubMed ID: 3552789 [TBL] [Abstract][Full Text] [Related]
14. The betaL integrin subunit is necessary for gastrulation in sea urchin embryos. Marsden M; Burke RD Dev Biol; 1998 Nov; 203(1):134-48. PubMed ID: 9806779 [TBL] [Abstract][Full Text] [Related]
15. Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation. Nocente-McGrath C; Brenner CA; Ernst SG Dev Biol; 1989 Nov; 136(1):264-72. PubMed ID: 2680683 [TBL] [Abstract][Full Text] [Related]
16. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo. Chen SW; Wessel GM Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869 [TBL] [Abstract][Full Text] [Related]
17. Determination and morphogenesis in the sea urchin embryo. Wilt FH Development; 1987 Aug; 100(4):559-76. PubMed ID: 3443047 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of fibrillar and basement membrane collagen expression in embryos of the sea urchin, Strongylocentrotus purpuratus. Suzuki HR; Reiter RS; D'Alessio M; Di Liberto M; Ramirez F; Exposito JY; Gambino R; Solursh M Zoolog Sci; 1997 Jun; 14(3):449-54. PubMed ID: 9314740 [TBL] [Abstract][Full Text] [Related]
19. Effect of α,α'-dipyridyl on Exogut Formation in Vegetalized Embryos of the Sea Urchin: (sea urchin embryo/exogut formation/vegetalized embryo/peptidyl praline hydroxylation/α, α'-dipyridyl). Mizoguchi H; Yasumasu I Dev Growth Differ; 1983; 25(1):57-64. PubMed ID: 37282161 [TBL] [Abstract][Full Text] [Related]
20. A spatially restricted molecule of the extracellular matrix is contributed both maternally and zygotically in the sea urchin embryo. Wessel GM; Berg L Dev Growth Differ; 1995 Oct; 37(5):517-527. PubMed ID: 37281055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]