BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 35528034)

  • 1. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies.
    Hakim M; Kermanshah L; Abouali H; Hashemi HM; Yari A; Khorasheh F; Alemzadeh I; Vossoughi M
    Biophys Rev; 2022 Apr; 14(2):517-543. PubMed ID: 35528034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip.
    Lin Z; Luo G; Du W; Kong T; Liu C; Liu Z
    Small; 2020 Mar; 16(9):e1903899. PubMed ID: 31747120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis.
    Xu X; Jiang Z; Wang J; Ren Y; Wu A
    Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip.
    Hakim M; Khorasheh F; Alemzadeh I; Vossoughi M
    Anal Chim Acta; 2021 Nov; 1186():339115. PubMed ID: 34756251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research.
    Regmi S; Poudel C; Adhikari R; Luo KQ
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis.
    Sigdel I; Gupta N; Faizee F; Khare VM; Tiwari AK; Tang Y
    Front Bioeng Biotechnol; 2021; 9():633671. PubMed ID: 33777909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Jan; ():e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells.
    Qian W; Zhang Y; Chen W
    Small; 2015 Aug; 11(32):3850-72. PubMed ID: 25993898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
    Huang YL; Segall JE; Wu M
    Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches.
    Sleeboom JJF; Eslami Amirabadi H; Nair P; Sahlgren CM; den Toonder JMJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29555848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey.
    Liu W; Vivian CJ; Brinker AE; Hampton KR; Lianidou E; Welch DR
    Cancer Microenviron; 2014 Dec; 7(3):117-31. PubMed ID: 24938990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer.
    Cortés-Hernández LE; Eslami-S Z; Alix-Panabières C
    Mol Aspects Med; 2020 Apr; 72():100816. PubMed ID: 31377345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Construction of a Multi-Organ Microfluidic Chip Mimicking the in vivo Microenvironment of Lung Cancer Metastasis.
    Xu Z; Li E; Guo Z; Yu R; Hao H; Xu Y; Sun Z; Li X; Lyu J; Wang Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25840-25847. PubMed ID: 27606718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptable Microfluidic Vessel-on-a-Chip Platform for Investigating Tumor Metastatic Transport in Bloodstream.
    Wu Y; Zhou Y; Paul R; Qin X; Islam K; Liu Y
    Anal Chem; 2022 Sep; 94(35):12159-12166. PubMed ID: 35998619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metastasis of circulating tumor cells: favorable soil or suitable biomechanics, or both?
    Azevedo AS; Follain G; Patthabhiraman S; Harlepp S; Goetz JG
    Cell Adh Migr; 2015; 9(5):345-56. PubMed ID: 26312653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-on-a-Chip: Models for Studying Metastasis.
    Zhang X; Karim M; Hasan MM; Hooper J; Wahab R; Roy S; Al-Hilal TA
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic technologies for circulating tumor cell isolation.
    Cho H; Kim J; Song H; Sohn KY; Jeon M; Han KH
    Analyst; 2018 Jun; 143(13):2936-2970. PubMed ID: 29796523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection.
    Wu M; Huang Y; Zhou Y; Zhao H; Lan Y; Yu Z; Jia C; Cong H; Zhao J
    Small Methods; 2022 Jul; 6(7):e2200226. PubMed ID: 35595707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics for studying metastatic patterns of lung cancer.
    Ruzycka M; Cimpan MR; Rios-Mondragon I; Grudzinski IP
    J Nanobiotechnology; 2019 May; 17(1):71. PubMed ID: 31133019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.