These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35528051)

  • 1. Cation exchange synthesis of CuIn
    Jia G; Wang K; Liu B; Yang P; Liu J; Zhang W; Li R; Wang C; Zhang S; Du J
    RSC Adv; 2019 Oct; 9(61):35780-35785. PubMed ID: 35528051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells.
    Lv X; Zheng Z; Zhao M; Wang H; Zhuang D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques.
    Jang YJ; Lee J; Lee KB; Kim D; Lee Y
    J Anal Methods Chem; 2018; 2018():6751964. PubMed ID: 30420936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Photovoltaic Cell Based on CIGS: Principles and Technologies.
    Salhi B
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.
    Chirilă A; Reinhard P; Pianezzi F; Bloesch P; Uhl AR; Fella C; Kranz L; Keller D; Gretener C; Hagendorfer H; Jaeger D; Erni R; Nishiwaki S; Buecheler S; Tiwari AN
    Nat Mater; 2013 Dec; 12(12):1107-11. PubMed ID: 24185758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the relationship between crystallo-chemistry and optical properties of CIGS nanocrystals.
    Ahmadi M; Pramana SS; Boothroyd C; Lam YM
    Nanotechnology; 2017 Jan; 28(4):045708. PubMed ID: 27997362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(In
    Lee J; Jeon DH; Hwang DK; Yang KJ; Kang JK; Sung SJ; Park H; Kim DH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and Structural Properties of High-Efficiency Epitaxial Cu(In,Ga)Se
    Guthrey H; Norman A; Nishinaga J; Niki S; Al-Jassim M; Shibata H
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3150-3160. PubMed ID: 31820906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se
    Park H; Alhammadi S; Minnam Reddy VR; Park C; Kim WK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored Band Structure of Cu(In,Ga)Se
    Park HK; Cho Y; Kim K; Jeong I; Gwak J; Yun JH; Jo W
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34697-34705. PubMed ID: 35856522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-graded CIGS with narrow bandgap for tandem solar cells.
    Feurer T; Bissig B; Weiss TP; Carron R; Avancini E; Löckinger J; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):263-270. PubMed ID: 29707066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals.
    Yen YT; Lin YK; Chang SH; Hong HF; Tuan HY; Chueh YL
    Nanoscale Res Lett; 2013 Jul; 8(1):329. PubMed ID: 23870036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency.
    Asaduzzaman M; Hasan M; Bahar AN
    Springerplus; 2016; 5():578. PubMed ID: 27247875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.
    Fernández-Martínez R; Caballero R; Guillén C; Gutiérrez MT; Rucandio MI
    Anal Bioanal Chem; 2005 May; 382(2):466-70. PubMed ID: 15702309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Narrow Band Gap Cu(In,Ga)Se
    Kamikawa Y; Nishinaga J; Shibata H; Ishizuka S
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45485-45492. PubMed ID: 32909729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indium-gallium segregation in CuIn(x)Ga(1-x)Se2: an ab initio-based Monte Carlo study.
    Ludwig CD; Gruhn T; Felser C; Schilling T; Windeln J; Kratzer P
    Phys Rev Lett; 2010 Jul; 105(2):025702. PubMed ID: 20867716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se
    Alhammadi S; Park H; Kim WK
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over 16% Efficient Solution-Processed Cu(In,Ga)Se
    Gao Q; Yuan S; Zhou Z; Kou D; Zhou W; Meng Y; Qi Y; Han L; Wu S
    Small; 2022 Sep; 18(39):e2203443. PubMed ID: 36026573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.