These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35528098)

  • 1. Kinetic and spectroscopic responses of pH-sensitive nanoparticles: influence of the silica matrix.
    Clasen A; Wenderoth S; Tavernaro I; Fleddermann J; Kraegeloh A; Jung G
    RSC Adv; 2019 Oct; 9(61):35695-35705. PubMed ID: 35528098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient core-shell fluorescent silica nanoprobe for ratiometric fluorescence detection of pH in living cells.
    Fu J; Ding C; Zhu A; Tian Y
    Analyst; 2016 Aug; 141(15):4766-71. PubMed ID: 27291898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stöber coating method.
    Lapresta-Fernández A; Doussineau T; Moro AJ; Dutz S; Steiniger F; Mohr GJ
    Anal Chim Acta; 2011 Nov; 707(1-2):164-70. PubMed ID: 22027134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-fluorophore Raspberry-like Nanohybrids for Ratiometric pH Sensing.
    Acquah I; Roh J; Ahn DJ
    Chem Asian J; 2017 Jul; 12(14):1724-1729. PubMed ID: 28503913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.
    Lapresta-Fernández A; Doussineau T; Dutz S; Steiniger F; Moro AJ; Mohr GJ
    Nanotechnology; 2011 Oct; 22(41):415501. PubMed ID: 21926455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application.
    Hanson GT; McAnaney TB; Park ES; Rendell ME; Yarbrough DK; Chu S; Xi L; Boxer SG; Montrose MH; Remington SJ
    Biochemistry; 2002 Dec; 41(52):15477-88. PubMed ID: 12501176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric Imaging of the in Situ pH Distribution of Biofilms by Use of Fluorescent Mesoporous Silica Nanosensors.
    Fulaz S; Hiebner D; Barros CHN; Devlin H; Vitale S; Quinn L; Casey E
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32679-32688. PubMed ID: 31418546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH-sensing using core/shell silica nanoparticles.
    Korzeniowska B; Woolley R; DeCourcey J; Wencel D; Loscher CE; McDonagh C
    J Biomed Nanotechnol; 2014 Jul; 10(7):1336-45. PubMed ID: 24804554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced distance-dependent fluorescence quenching using size tuneable core shell silica nanoparticles.
    Elsutohy MM; Selo A; Chauhan VM; Tendler SJB; Aylott JW
    RSC Adv; 2018 Oct; 8(62):35840-35848. PubMed ID: 35547883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
    Bai Z; Chen R; Si P; Huang Y; Sun H; Kim DH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5856-60. PubMed ID: 23716502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell structured CdTe/CdS@SiO
    Liu F; Li S; Hu R; Shao N
    Luminescence; 2017 Aug; 32(5):723-729. PubMed ID: 27860110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors.
    Hidalgo G; Burns A; Herz E; Hay AG; Houston PL; Wiesner U; Lion LW
    Appl Environ Microbiol; 2009 Dec; 75(23):7426-35. PubMed ID: 19801466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly Imprinted Core-Shell CdSe@SiO
    Liu M; Gao Z; Yu Y; Su R; Huang R; Qi W; He Z
    Nanoscale Res Lett; 2018 Jan; 13(1):27. PubMed ID: 29349585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric fluorescence and mesoporous structured imprinting nanoparticles for rapid and sensitive detection 2,4,6-trinitrophenol.
    Li M; Liu H; Ren X
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):899-905. PubMed ID: 27818054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel "modularized" optical sensor for pH monitoring in biological matrixes.
    Liu X; Zhang SQ; Wei X; Yang T; Chen ML; Wang JH
    Biosens Bioelectron; 2018 Jun; 109():150-155. PubMed ID: 29550738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators.
    Di Paolo M; Roberti MJ; Bordoni AV; Aramendía PF; Wolosiuk A; Bossi ML
    Photochem Photobiol Sci; 2019 Jan; 18(1):155-165. PubMed ID: 30375617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements.
    Peerzade SAMA; Makarova N; Sokolov I
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34207605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design, synthesis, and spectroscopic and photophysical properties of a visible-light-excitable, ratiometric, fluorescent near-neutral pH indicator based on BODIPY.
    Boens N; Qin W; Baruah M; De Borggraeve WM; Filarowski A; Smisdom N; Ameloot M; Crovetto L; Talavera EM; Alvarez-Pez JM
    Chemistry; 2011 Sep; 17(39):10924-34. PubMed ID: 21932233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.