These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35528331)

  • 1. Research on Multicamera Photography Image Art in BERT Motion Based on Deep Learning Mode.
    Zhao Z; Song M; Tang H
    Comput Intell Neurosci; 2022; 2022():2819269. PubMed ID: 35528331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Foot Position Estimation Based on Footprint Shadow Image Processing and Deep Learning for Smart Trampoline Fitness System.
    Park SK; Park JK; Won HI; Choi SH; Kim CH; Lee S; Kim MY
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion correction of respiratory-gated PET images using deep learning based image registration framework.
    Li T; Zhang M; Qi W; Asma E; Qi J
    Phys Med Biol; 2020 Jul; 65(15):155003. PubMed ID: 32244230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic chessboard detection for intrinsic and extrinsic camera parameter calibration.
    de la Escalera A; Armingol JM
    Sensors (Basel); 2010; 10(3):2027-44. PubMed ID: 22294912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible multicamera calibration method with a rotating calibration plate.
    Cai H; Song Y; Shi Y; Cao Z; Guo Z; Li Z; He A
    Opt Express; 2020 Oct; 28(21):31397-31413. PubMed ID: 33115113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Camera Calibration Method Based on Polar Coordinate.
    Gai S; Da F; Fang X
    PLoS One; 2016; 11(10):e0165487. PubMed ID: 27798651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Film Effect Optimization by Deep Learning and Virtual Reality Technology in New Media Environment.
    Cui L; Zhang Z; Wang J; Meng Z
    Comput Intell Neurosci; 2022; 2022():8918073. PubMed ID: 35634038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Precision Calibration Algorithm for Binocular Stereo Vision Camera using Deep Reinforcement Learning.
    Ren J; Guan F; Wang T; Qian B; Luo C; Cai G; Kan C; Li X
    Comput Intell Neurosci; 2022; 2022():6596868. PubMed ID: 35401726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Pilot Study on Convolutional Neural Networks for Motion Estimation From Ultrasound Images.
    Evain E; Faraz K; Grenier T; Garcia D; De Craene M; Bernard O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2565-2573. PubMed ID: 32112679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.
    Bengs M; Gessert N; Schlüter M; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):943-952. PubMed ID: 32445128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal calibration for a ring camera array based on a rotational target.
    Ge P; Wang Y; Wang B
    Opt Express; 2022 Apr; 30(9):14538-14552. PubMed ID: 35473194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MIQM: a multicamera image quality measure.
    Solh M; AlRegib G
    IEEE Trans Image Process; 2012 Sep; 21(9):3902-14. PubMed ID: 22645264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective measurement of erythema in psoriasis using digital color photography with color calibration.
    Raina A; Hennessy R; Rains M; Allred J; Diven D; Markey MK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3333-6. PubMed ID: 25570704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrospective correction of motion-affected MR images using deep learning frameworks.
    Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S
    Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.