BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35528881)

  • 1. Generation of hydrogen sulfide during the thermal enhanced oil recovery process under superheated steam conditions.
    Ma Q; Yang Z; Zhang L; Lin R; Wang X
    RSC Adv; 2019 Oct; 9(58):33990-33996. PubMed ID: 35528881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS.
    Islam A; Cho Y; Yim UH; Shim WJ; Kim YH; Kim S
    J Hazard Mater; 2013 Dec; 263 Pt 2():404-11. PubMed ID: 24231315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of H2S in Crude Oil and Crude Oil Headspace Using Multidimensional Gas Chromatography, Deans Switching and Sulfur-selective Detection.
    Heshka NE; Hager DB
    J Vis Exp; 2015 Dec; (106):e53416. PubMed ID: 26709594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
    Montgomery W; Sephton MA; Watson JS; Zeng H; Rees AC
    Sci Rep; 2015 Feb; 5():8159. PubMed ID: 25670085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Hydroconversion Law of Coal-Based Heavy Fractions with Different Catalyst Contents Based on an Improved Separation Method.
    Wang Y; Tian F; Zhu Y; Cui L; Fan X; Du C; Wang F; Zheng H; Yang Y; Li D
    ACS Omega; 2023 Jun; 8(25):22440-22452. PubMed ID: 37396277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Aquathermolysis of Water-Heavy Oil-Ethanol Catalyzed by B@Zn(II)L at Low Temperature.
    Shen Z; Fang X; He W; Zhang L; Li Y; Qi G; Xin X; Zhao B; Chen G
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Insights into the Catalytic Effect of Transition-Metal Ions on the Aquathermal Degradation of Sulfur-Containing Heavy Oil: A DFT Study of Cyclohexyl Phenyl Sulfide Cleavage.
    Tverdov I; Khafizov NR; Madzhidov TI; Varfolomeev MA; Yuan C; Kadkin ON
    ACS Omega; 2020 Aug; 5(31):19589-19597. PubMed ID: 32803053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic study on sorption of hydrogen sulfide by means of red soil.
    Ko TH; Chu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2253-9. PubMed ID: 15911419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory Experiments on the In Situ Upgrading of Heavy Crude Oil Using Catalytic Aquathermolysis by Acidic Ionic Liquid.
    D Alharthy R; El-Nagar RA; Ghanem A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of asphaltene and resin fractions in crude oil using laser-induced fluorescence spectroscopy based on modified Beer-Lambert (LIFS-MBL).
    Ahmadinouri F; Parvin P; Rabbani AR
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 304():123314. PubMed ID: 37672886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Distribution and diversity of sulfate-reducing bacteria in a crude oil gathering and transferring system].
    Luo L; Liu YJ; Wang XC
    Huan Jing Ke Xue; 2010 Sep; 31(9):2160-5. PubMed ID: 21072940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions.
    Shibulal B; Al-Bahry SN; Al-Wahaibi YM; Elshafie AE; Al-Bemani AS; Joshi SJ
    PLoS One; 2017; 12(2):e0171432. PubMed ID: 28196087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
    Sun M; Sun W; Barlaz MA
    Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices.
    Djokic MR; Ristic ND; Olahova N; Marin GB; Van Geem KM
    J Chromatogr A; 2017 Aug; 1509():102-113. PubMed ID: 28648258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland.
    Khoroshko LO; Petrova VN; Takhistov VV; Viktorovskii IV; Lahtiperä M; Paasivirta J
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):366-76. PubMed ID: 17993219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upgrading of Extra-Heavy Crude Oils by Dispersed Injection of NiO-PdO/CeO
    Medina OE; Caro-Vélez C; Gallego J; Cortés FB; Lopera SH; Franco CA
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31835515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphical procedure for comparing thermal death of Bacillus stearothermophilus spores in saturated and superheated steam.
    SHULL JJ; ERNST RR
    Appl Microbiol; 1962 Sep; 10(5):452-7. PubMed ID: 13988774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).
    Olson KR; Gao Y; DeLeon ER; Arif M; Arif F; Arora N; Straub KD
    Redox Biol; 2017 Aug; 12():325-339. PubMed ID: 28285261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contactless steam generation and superheating under one sun illumination.
    Cooper TA; Zandavi SH; Ni GW; Tsurimaki Y; Huang Y; Boriskina SV; Chen G
    Nat Commun; 2018 Dec; 9(1):5086. PubMed ID: 30538234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.