BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35528939)

  • 1. Mapping of the Quantitative Trait Loci and Candidate Genes Associated With Iron Efficiency in Maize.
    Xu J; Qin X; Zhu H; Chen F; Fu X; Yu F
    Front Plant Sci; 2022; 13():855572. PubMed ID: 35528939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Quantitative Trait Loci Associated With Iron Deficiency Tolerance in Maize.
    Xu J; Zhu X; Yan F; Zhu H; Zhou X; Yu F
    Front Plant Sci; 2022; 13():805247. PubMed ID: 35498718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize.
    Xu J; Xu W; Chen X; Zhu H; Fu X; Yu F
    Front Plant Sci; 2022; 13():878809. PubMed ID: 35720580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Analysis of Zinc Efficiency-Associated Loci in Maize.
    Xu J; Wang X; Zhu H; Yu F
    Front Plant Sci; 2021; 12():739282. PubMed ID: 34868123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Zinc Efficiency-Associated Loci (
    Xu J; Qin X; Ni Z; Chen F; Fu X; Yu F
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic basis of natural variation for iron homeostasis in the maize IBM population.
    Benke A; Urbany C; Marsian J; Shi R; Wirén Nv; Stich B
    BMC Plant Biol; 2014 Jan; 14():12. PubMed ID: 24400634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative trait loci and candidate genes for iron and zinc bio-fortification in genetically diverse germplasm of maize (
    Basnet B; Khanal S
    Heliyon; 2022 Dec; 8(12):e12593. PubMed ID: 36619433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress.
    Li Y; Wang N; Zhao F; Song X; Yin Z; Huang R; Zhang C
    Plant Mol Biol; 2014 Jul; 85(4-5):349-63. PubMed ID: 24648157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping quantitative trait loci associated with stem-related traits in maize (Zea mays L.).
    Shang Q; Zhang D; Li R; Wang K; Cheng Z; Zhou Z; Hao Z; Pan J; Li X; Shi L
    Plant Mol Biol; 2020 Dec; 104(6):583-595. PubMed ID: 32901412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Analysis and QTL Mapping Identify Candidate Genes and Regulatory Mechanisms Related to Low-Temperature Germination Ability in Maize.
    Du L; Peng X; Zhang H; Xin W; Ma K; Liu Y; Hu G
    Genes (Basel); 2023 Oct; 14(10):. PubMed ID: 37895266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population.
    Liu YH; Yi Q; Hou XB; Zhang XG; Zhang JJ; Liu HM; Hu YF; Huang YB
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters.
    Yordem BK; Conte SS; Ma JF; Yokosho K; Vasques KA; Gopalsamy SN; Walker EL
    Ann Bot; 2011 Oct; 108(5):821-33. PubMed ID: 21831857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter.
    Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R
    Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3, and ZmYS1, in S deprived maize plants.
    Chorianopoulou SN; Saridis YI; Dimou M; Katinakis P; Bouranis DL
    Front Plant Sci; 2015; 6():257. PubMed ID: 25941530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of QTL for agronomic traits using high-density SNPs with an RIL population in maize.
    Sa KJ; Choi IY; Park JY; Choi JK; Ryu SH; Lee JK
    Genes Genomics; 2021 Dec; 43(12):1403-1411. PubMed ID: 34591233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage mapping combined with GWAS revealed the genetic structural relationship and candidate genes of maize flowering time-related traits.
    Shi J; Wang Y; Wang C; Wang L; Zeng W; Han G; Qiu C; Wang T; Tao Z; Wang K; Huang S; Yu S; Wang W; Chen H; Chen C; He C; Wang H; Zhu P; Hu Y; Zhang X; Xie C; Lu X; Li P
    BMC Plant Biol; 2022 Jul; 22(1):328. PubMed ID: 35799118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population.
    Goering R; Larsen S; Tan J; Whelan J; Makarevitch I
    PLoS One; 2021; 16(7):e0254437. PubMed ID: 34242344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and physiological analysis of iron biofortification in maize kernels.
    Lung'aho MG; Mwaniki AM; Szalma SJ; Hart JJ; Rutzke MA; Kochian LV; Glahn RP; Hoekenga OA
    PLoS One; 2011; 6(6):e20429. PubMed ID: 21687662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley.
    Ueno D; Yamaji N; Ma JF
    J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.