These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35529062)
1. Differences in Coformer Interactions of the 2,4-Diaminopyrimidines Pyrimethamine and Trimethoprim. Alaa Eldin Refat L; O'Malley C; Simmie JM; McArdle P; Erxleben A Cryst Growth Des; 2022 May; 22(5):3163-3173. PubMed ID: 35529062 [TBL] [Abstract][Full Text] [Related]
2. Cocrystal screening of benznidazole based on electronic transition, molecular reactivity, hydrogen bonding, and stability. Paneru TR; Chaudhary MK; Joshi BD; Tandon P J Mol Model; 2024 Oct; 30(11):378. PubMed ID: 39404909 [TBL] [Abstract][Full Text] [Related]
3. Modularity and three-dimensional isostructurality of novel synthons in sulfonamide-lactam cocrystals. Bolla G; Mittapalli S; Nangia A IUCrJ; 2015 Jul; 2(Pt 4):389-401. PubMed ID: 26175899 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular hydrogen-bonding patterns in salts of the antifolate drugs trimethoprim and pyrimethamine. Swinton Darious R; Thomas Muthiah P; Perdih F Acta Crystallogr C Struct Chem; 2018 Apr; 74(Pt 4):487-503. PubMed ID: 29620034 [TBL] [Abstract][Full Text] [Related]
5. From a Binary to a Quaternary Cocrystal: An Unusual Supramolecular Synthon. Paul M; Desiraju GR Angew Chem Int Ed Engl; 2019 Aug; 58(35):12027-12031. PubMed ID: 31267635 [TBL] [Abstract][Full Text] [Related]
6. One barbiturate and two solvated thiobarbiturates containing the triply hydrogen-bonded ADA/DAD synthon, plus one ansolvate and three solvates of their coformer 2,4-diaminopyrimidine. Hützler WM; Egert E; Bolte M Acta Crystallogr C Struct Chem; 2016 Sep; 72(Pt 9):705-15. PubMed ID: 27585936 [TBL] [Abstract][Full Text] [Related]
7. In vitro susceptibility of Plasmodium falciparum malaria to pyrimethamine, sulfadoxine, trimethoprim and sulfamethoxazole, singly and in combination. Petersen E Trans R Soc Trop Med Hyg; 1987; 81(2):238-41. PubMed ID: 3303480 [TBL] [Abstract][Full Text] [Related]
8. Combinations of Tautomeric Forms and Neutral-Cationic Forms in the Cocrystals of Sulfamethazine with Carboxylic Acids. Singh MP; Baruah JB ACS Omega; 2019 Jul; 4(7):11609-11620. PubMed ID: 31460268 [TBL] [Abstract][Full Text] [Related]
9. Design of two series of 1:1 cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids. Rajam A; Muthiah PT; Butcher RJ; Jasinski JP; Wikaira J Acta Crystallogr C Struct Chem; 2018 Sep; 74(Pt 9):1007-1019. PubMed ID: 30191892 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular interactions in salts/cocrystals involving pyrimidine derivatives of sulfonate/carboxylic acid. Mohana M; Thomas Muthiah P; McMillen CD; Butcher RJ Acta Crystallogr C Struct Chem; 2023 Feb; 79(Pt 2):61-67. PubMed ID: 36739611 [TBL] [Abstract][Full Text] [Related]
11. Sulfur as hydrogen-bond acceptor in cocrystals of 2-thio-modified thymine. Hützler WM; Bolte M Acta Crystallogr C Struct Chem; 2018 Jan; 74(Pt 1):21-30. PubMed ID: 29303493 [TBL] [Abstract][Full Text] [Related]
12. Cocrystals of the antibiotic trimethoprim with glutarimide and 3,3-dimethylglutarimide held together by three hydrogen bonds. Ton QC; Egert E Acta Crystallogr C Struct Chem; 2015 Jan; 71(Pt 1):75-9. PubMed ID: 25567580 [TBL] [Abstract][Full Text] [Related]
13. Formation of Salts and Molecular Ionic Cocrystals of Fluoroquinolones and α,ω-Dicarboxylic Acids. O'Malley C; McArdle P; Erxleben A Cryst Growth Des; 2022 May; 22(5):3060-3071. PubMed ID: 35529070 [TBL] [Abstract][Full Text] [Related]
14. A pseudo-quadruple hydrogen-bonding motif consisting of six N-H...O hydrogen bonds in trimethoprim formate. Umadevi B; Prabakaran P; Muthiah PT Acta Crystallogr C; 2002 Aug; 58(Pt 8):o510-2. PubMed ID: 12154314 [TBL] [Abstract][Full Text] [Related]
15. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Bolla G; Sarma B; Nangia AK Chem Rev; 2022 Jul; 122(13):11514-11603. PubMed ID: 35642550 [TBL] [Abstract][Full Text] [Related]
16. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon. Hützler WM; Egert E Acta Crystallogr C Struct Chem; 2015 Mar; 71(Pt 3):229-38. PubMed ID: 25734855 [TBL] [Abstract][Full Text] [Related]
17. Crystal engineering of analogous and homologous organic compounds: hydrogen bonding patterns in trimethoprim hydrogen phthalate and trimethoprim hydrogen adipate. Muthiah PT; Francis S; Rychlewska U; Warzajtis B Beilstein J Org Chem; 2006 Apr; 2():8. PubMed ID: 16603061 [TBL] [Abstract][Full Text] [Related]
18. New Cocrystals of Ligustrazine: Enhancing Hygroscopicity and Stability. Xie Y; Gong L; Tao Y; Zhang B; Zhang L; Yang S; Yang D; Lu Y; Du G Molecules; 2024 May; 29(10):. PubMed ID: 38792070 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid. Mohana M; Muthiah PT; McMillen CD Acta Crystallogr C Struct Chem; 2017 Mar; 73(Pt 3):259-263. PubMed ID: 28257022 [TBL] [Abstract][Full Text] [Related]
20. Organic Binary and Ternary Cocrystal Engineering Based on Halogen Bonding Aimed at Room-Temperature Phosphorescence. Abe A; Goushi K; Mamada M; Adachi C Adv Mater; 2024 May; 36(20):e2211160. PubMed ID: 36920271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]