These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35529136)
1. Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene. Ouyang Y; Zhang Z; Xi Q; Jiang P; Ren W; Li N; Zhou J; Chen J RSC Adv; 2019 Oct; 9(57):33549-33557. PubMed ID: 35529136 [TBL] [Abstract][Full Text] [Related]
2. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers. Zhang T; Luo T J Phys Chem B; 2016 Feb; 120(4):803-12. PubMed ID: 26751002 [TBL] [Abstract][Full Text] [Related]
3. Chain length effect on thermal transport in amorphous polymers and a structure-thermal conductivity relation. Wei X; Luo T Phys Chem Chem Phys; 2019 Jul; 21(28):15523-15530. PubMed ID: 31263807 [TBL] [Abstract][Full Text] [Related]
4. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions. Wei X; Zhang T; Luo T Phys Chem Chem Phys; 2016 Nov; 18(47):32146-32154. PubMed ID: 27849076 [TBL] [Abstract][Full Text] [Related]
5. Effect of side-chain π-π stacking on the thermal conductivity switching in azobenzene polymers: a molecular dynamics simulation study. Wei X; Luo T Phys Chem Chem Phys; 2022 May; 24(17):10272-10279. PubMed ID: 35437555 [TBL] [Abstract][Full Text] [Related]
6. High thermal conductivity in electrostatically engineered amorphous polymers. Shanker A; Li C; Kim GH; Gidley D; Pipe KP; Kim J Sci Adv; 2017 Jul; 3(7):e1700342. PubMed ID: 28782022 [TBL] [Abstract][Full Text] [Related]
7. Tuning the thermal conductivity of solar cell polymers through side chain engineering. Guo Z; Lee D; Liu Y; Sun F; Sliwinski A; Gao H; Burns PC; Huang L; Luo T Phys Chem Chem Phys; 2014 May; 16(17):7764-71. PubMed ID: 24643840 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Mechanical Elongation on the Thermal Conductivity of Amorphous and Semicrystalline Thermoplastic Polyimides: Atomistic Simulations. Nazarychev VM; Lyulin SV Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447571 [TBL] [Abstract][Full Text] [Related]
9. Estimation of thermal conductivity of amorphous carbon nanotube using molecular dynamics simulations. Ghosh MM J Nanosci Nanotechnol; 2013 Apr; 13(4):2961-6. PubMed ID: 23763186 [TBL] [Abstract][Full Text] [Related]
10. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance. Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218 [TBL] [Abstract][Full Text] [Related]
11. High thermal conductivity of chain-oriented amorphous polythiophene. Singh V; Bougher TL; Weathers A; Cai Y; Bi K; Pettes MT; McMenamin SA; Lv W; Resler DP; Gattuso TR; Altman DH; Sandhage KH; Shi L; Henry A; Cola BA Nat Nanotechnol; 2014 May; 9(5):384-90. PubMed ID: 24681778 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of steady-state crystal growth and homogeneous nucleation in polyethylene-like polymer. Yamamoto T J Chem Phys; 2008 Nov; 129(18):184903. PubMed ID: 19045427 [TBL] [Abstract][Full Text] [Related]
14. Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides. Aryana K; Stewart DA; Gaskins JT; Nag J; Read JC; Olson DH; Grobis MK; Hopkins PE Nat Commun; 2021 May; 12(1):2817. PubMed ID: 33990553 [TBL] [Abstract][Full Text] [Related]
15. Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups. Zhang Y; Zhang X; Yang L; Zhang Q; Fitzgerald ML; Ueda A; Chen Y; Mu R; Li D; Bellan LM Soft Matter; 2018 Dec; 14(47):9534-9541. PubMed ID: 30376032 [TBL] [Abstract][Full Text] [Related]
16. Exploring High Thermal Conductivity Amorphous Polymers Using Reinforcement Learning. Ma R; Zhang H; Luo T ACS Appl Mater Interfaces; 2022 Apr; 14(13):15587-15598. PubMed ID: 35344333 [TBL] [Abstract][Full Text] [Related]
17. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137 [TBL] [Abstract][Full Text] [Related]
18. Effect of graphene and carbon-nitride nanofillers on the thermal transport properties of polymer nanocomposites: A combined molecular dynamics and finite element study. Razzaghi L; Khalkhali M; Rajabpour A; Khoeini F Phys Rev E; 2021 Jan; 103(1-1):013310. PubMed ID: 33601553 [TBL] [Abstract][Full Text] [Related]
19. Polyethylene nanofibres with very high thermal conductivities. Shen S; Henry A; Tong J; Zheng R; Chen G Nat Nanotechnol; 2010 Apr; 5(4):251-5. PubMed ID: 20208547 [TBL] [Abstract][Full Text] [Related]
20. Modifying thermal transport in electrically conducting polymers: effects of stretching and combining polymer chains. Pal S; Balasubramanian G; Puri IK J Chem Phys; 2012 Jan; 136(4):044901. PubMed ID: 22299913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]