These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35529201)

  • 1. Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines.
    Bissessar D; Egly J; Achard T; Steffanut P; Bellemin-Laponnaz S
    RSC Adv; 2019 Aug; 9(47):27250-27256. PubMed ID: 35529201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amido Ca and Yb(II) Complexes Coordinated by Amidine-Amidopyridinate Ligands for Catalytic Intermolecular Olefin Hydrophosphination.
    Lapshin IV; Yurova OS; Basalov IV; Rad'kov VY; Musina EI; Cherkasov AV; Fukin GK; Karasik AA; Trifonov AA
    Inorg Chem; 2018 Mar; 57(5):2942-2952. PubMed ID: 29443529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination.
    Sadeer A; Ong YJ; Kojima T; Foo CQ; Li Y; Pullarkat SA; Leung PH
    Chem Asian J; 2018 Oct; 13(19):2829-2833. PubMed ID: 30022614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular zirconium-catalyzed hydrophosphination of alkenes and dienes with primary phosphines.
    Ghebreab MB; Bange CA; Waterman R
    J Am Chem Soc; 2014 Jul; 136(26):9240-3. PubMed ID: 24937212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophosphination of alkenes and alkynes with primary phosphines catalyzed by zirconium complexes bearing aminophenolato ligands.
    Zhang Y; Wang X; Wang Y; Yuan D; Yao Y
    Dalton Trans; 2018 Jul; 47(27):9090-9095. PubMed ID: 29932452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palladium(II)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines.
    Huang Y; Pullarkat SA; Li Y; Leung PH
    Chem Commun (Camb); 2010 Oct; 46(37):6950-2. PubMed ID: 20730193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markovnikov versus anti-Markovnikov Hydrophosphination: Divergent Reactivity Using an Iron(II) β-Diketiminate Pre-Catalyst.
    King AK; Gallagher KJ; Mahon MF; Webster RL
    Chemistry; 2017 Jul; 23(38):9039-9043. PubMed ID: 28544315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Aluminate-Catalyzed Hydrophosphination Applications.
    Pollard VA; Young A; McLellan R; Kennedy AR; Tuttle T; Mulvey RE
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12291-12296. PubMed ID: 31260154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broken Promises? On the Continued Challenges Faced in Catalytic Hydrophosphination.
    Lau S; Hood TM; Webster RL
    ACS Catal; 2022 Sep; 12(17):10939-10949. PubMed ID: 36082053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regioselective Markovnikov hydrodifluoroalkylation of alkenes using difluoroenoxysilanes.
    Hu XS; He JX; Dong SZ; Zhao QH; Yu JS; Zhou J
    Nat Commun; 2020 Oct; 11(1):5500. PubMed ID: 33127898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature hydrophosphination using a simple iron salen pre-catalyst.
    Gallagher KJ; Webster RL
    Chem Commun (Camb); 2014 Oct; 50(81):12109-11. PubMed ID: 25168587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes.
    Zhang Y; Qu L; Wang Y; Yuan D; Yao Y; Shen Q
    Inorg Chem; 2018 Jan; 57(1):139-149. PubMed ID: 29227629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-catalyzed anti-hydrophosphination reaction of 1-alkynylphosphines with diphenylphosphine providing (Z)-1,2-diphosphino-1-alkenes.
    Kondoh A; Yorimitsu H; Oshima K
    J Am Chem Soc; 2007 Apr; 129(13):4099-104. PubMed ID: 17355137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zirconium-catalyzed intermolecular hydrophosphination using a chiral, air-stable primary phosphine.
    Bange CA; Ghebreab MB; Ficks A; Mucha NT; Higham L; Waterman R
    Dalton Trans; 2016 Feb; 45(5):1863-7. PubMed ID: 26530894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markovnikov-Type Hydrotrifluoromethylchalcogenation of Unactivated Terminal Alkenes with [Me
    Shi J; Zhang CP
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33022964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. anti-Markovnikov Iodofluorination of Alkenes.
    Qian BY; Zhang W; Lin JH; Cao W; Xiao JC
    Chem Asian J; 2022 May; 17(9):e202200184. PubMed ID: 35266316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using
    Das D; Bhosle AA; Chatterjee A; Banerjee M
    Beilstein J Org Chem; 2022; 18():999-1008. PubMed ID: 36051564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-Catalyzed Regioselective Anti-Markovnikov Addition of C-H Bonds in Aromatic Ketones to Alkenes.
    Kimura N; Kochi T; Kakiuchi F
    J Am Chem Soc; 2017 Oct; 139(42):14849-14852. PubMed ID: 29039660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladacycle-catalyzed asymmetric hydrophosphination of enones for synthesis of C*- and P*-chiral tertiary phosphines.
    Huang Y; Pullarkat SA; Li Y; Leung PH
    Inorg Chem; 2012 Feb; 51(4):2533-40. PubMed ID: 22289417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.