These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 35529646)
1. Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells. Yang Y; Wu L; Hao X; Tang Z; Lai H; Zhang J; Wang W; Feng L RSC Adv; 2019 Sep; 9(49):28561-28568. PubMed ID: 35529646 [TBL] [Abstract][Full Text] [Related]
2. Suppressing Residual Lead Iodide and Defects in Sequential-Deposited Perovskite Solar Cell via Bidentate Potassium Dichloroacetate Ligand. Yang Y; Liang J; Zhang Z; Tian C; Wu X; Zheng Y; Huang Y; Wang J; Zhou Z; He M; Chen Z; Chen CC ChemSusChem; 2022 Mar; 15(6):e202102474. PubMed ID: 35023623 [TBL] [Abstract][Full Text] [Related]
4. Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells. Rao Y; Li Z; Liu D; Chen C; Wang X; Cui G; Pang S ACS Appl Mater Interfaces; 2021 May; 13(17):20043-20050. PubMed ID: 33896179 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Efficiency of Air-Stable CsPbBr Zhang W; Liu X; He B; Zhu J; Li X; Shen K; Chen H; Duan Y; Tang Q ACS Appl Mater Interfaces; 2020 Aug; 12(32):36092-36101. PubMed ID: 32663398 [TBL] [Abstract][Full Text] [Related]
7. Influence of the MACl additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Guo Y; Yuan S; Zhu D; Yu M; Wang HY; Lin J; Wang Y; Qin Y; Zhang JP; Ai XC Phys Chem Chem Phys; 2021 Mar; 23(10):6162-6170. PubMed ID: 33687033 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Study To Suppress Charge Carrier Recombination for High Efficiency Perovskite Solar Cells. Adhikari N; Dubey A; Khatiwada D; Mitul AF; Wang Q; Venkatesan S; Iefanova A; Zai J; Qian X; Kumar M; Qiao Q ACS Appl Mater Interfaces; 2015 Dec; 7(48):26445-54. PubMed ID: 26579732 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
10. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells. Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140 [TBL] [Abstract][Full Text] [Related]
12. Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Wolff CM; Caprioglio P; Stolterfoht M; Neher D Adv Mater; 2019 Dec; 31(52):e1902762. PubMed ID: 31631441 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Stability and Efficiency of Inverted Perovskite Solar Cells with a Mixed Ammonium Ligands Passivation Strategy. Lee HJ; Kang YJ; Kwon SN; Kim DH; Na SI Small Methods; 2024 Mar; 8(3):e2300948. PubMed ID: 38009733 [TBL] [Abstract][Full Text] [Related]
14. Ionic Liquid-Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Open-Circuit Voltage. Hu P; Huang S; Guo M; Li Y; Wei M ChemSusChem; 2022 Aug; 15(15):e202200819. PubMed ID: 35642752 [TBL] [Abstract][Full Text] [Related]
15. Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells. Zou Y; Guo R; Buyruk A; Chen W; Xiao T; Yin S; Jiang X; Kreuzer LP; Mu C; Ameri T; Schwartzkopf M; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2020 Nov; 12(47):52643-52651. PubMed ID: 33190484 [TBL] [Abstract][Full Text] [Related]
16. High-Performance CH Jahandar M; Khan N; Lee HK; Lee SK; Shin WS; Lee JC; Song CE; Moon SJ ACS Appl Mater Interfaces; 2017 Oct; 9(41):35871-35879. PubMed ID: 28948770 [TBL] [Abstract][Full Text] [Related]
17. Effects of Moisture-Based Grain Boundary Passivation on Cell Performance and Ionic Migration in Organic-Inorganic Halide Perovskite Solar Cells. Hoque MNF; He R; Warzywoda J; Fan Z ACS Appl Mater Interfaces; 2018 Sep; 10(36):30322-30329. PubMed ID: 30118195 [TBL] [Abstract][Full Text] [Related]
18. Synchronous Surface Reconstruction and Defect Passivation for High-Performance Inorganic Perovskite Solar Cells. Zhang H; Tian Q; Gu X; Zhang S; Wang Z; Zuo X; Liu Y; Zhao K; Liu SF Small; 2022 Aug; 18(33):e2202690. PubMed ID: 35859526 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Defect Passivation and Crystallization Modulation in Efficient Perovskite Solar Cells: The Case of Multifunctional 2-Anisidine-4-Sulfonic Acid. Li Y; Song X; Deng F; Wang Y; Yu Y; Han X; Tao X ACS Appl Mater Interfaces; 2023 Oct; 15(41):48207-48215. PubMed ID: 37787659 [TBL] [Abstract][Full Text] [Related]
20. Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. De Marco N; Zhou H; Chen Q; Sun P; Liu Z; Meng L; Yao EP; Liu Y; Schiffer A; Yang Y Nano Lett; 2016 Feb; 16(2):1009-16. PubMed ID: 26790037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]