These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35529768)

  • 1. Study on the influence of coconut oil on flow pattern and pressure drop of two-phase swirl flow.
    Wang S; Ding B; Rao Y; Chen F
    RSC Adv; 2019 Oct; 9(56):32644-32655. PubMed ID: 35529768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulation on the Flow Pattern of a Gas-Liquid Two-Phase Swirl Flow.
    Rao Y; Liu Z; Wang S; Li L
    ACS Omega; 2022 Jan; 7(3):2679-2689. PubMed ID: 35097266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on Hydrate Safe Flow in Pipelines under a Swirl Flow System.
    Rao Y; Liu Z; Wang S; Li L
    ACS Omega; 2022 May; 7(19):16629-16643. PubMed ID: 35601304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dataset of flow experiment: Effects of density, viscosity and surface tension on flow regimes and pressure drop of two-phase flow in horizontal pipes.
    Al-Dogail AS; Gajbhiye RN
    Data Brief; 2021 Oct; 38():107396. PubMed ID: 34621927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and Computational Investigation upon Combustion Characteristics of Liquid Fuel in a Novel Combustor with Hybrid Swirl and Recirculation Bowl.
    Mohapatra S; Alsulami R; Karmakar S; Dash SK; Reddy VM
    ACS Omega; 2023 Jan; 8(1):1523-1533. PubMed ID: 36643561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study on Gas-Solid Two-Phase Flow Characteristics of a Vertical Cyclone Combustor System.
    Xu W; Tang Y; Wang H; Sun Y; Fang F; Guo X; Wang W
    ACS Omega; 2023 Dec; 8(49):46914-46921. PubMed ID: 38107898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels.
    Kalli M; Chagot L; Angeli P
    J Colloid Interface Sci; 2022 Jan; 605():204-213. PubMed ID: 34329974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Gas-Liquid Interfaces by Dissipative Particle Dynamics: Adsorption and Surface Tension of Cetyl Trimethyl Ammonium Bromide at the Air-Water Interface.
    Wang X; Santo KP; Neimark AV
    Langmuir; 2020 Dec; 36(48):14686-14698. PubMed ID: 33216560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of Emulsions Made with Surfactant-Oil-Water Systems at Optimum Formulation with Ultralow Interfacial Tension.
    Marquez R; Forgiarini AM; Langevin D; Salager JL
    Langmuir; 2018 Aug; 34(31):9252-9263. PubMed ID: 29986590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Crude Oil Stripped by Surfactant Action and Fluid Free Motion Characteristics in Porous Medium.
    Cheng Q; Cao G; Bai Y; Liu Y
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control device for improving swirl flame stabilization.
    Krebbers L; Hawley D; Kheirkhah S
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38059762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the influence of surfactants on the transfer of gases into liquids by inverse gas chromatography.
    Atta KR; Gavril D; Loukopoulos V; Karaiskakis G
    J Chromatogr A; 2004 Jan; 1023(2):287-96. PubMed ID: 14753695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow.
    Dunér G; Garoff S; Przybycien TM; Tilton RD
    J Colloid Interface Sci; 2016 Jan; 462():75-87. PubMed ID: 26433480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Titanium Dioxide Nanoparticles on Surfactants and Their Impact on the Interfacial Properties of the Oil-Water-Rock System.
    Megayanti R; Hidayat M; Cahyaningtyas N; Sanmurjana M; Nur Muhammad Yahya Z; Sagita F; Kadja GTM; Marhaendrajana T
    ACS Omega; 2023 Oct; 8(41):38539-38545. PubMed ID: 37867665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface.
    Jin J; Li X; Geng J; Jing D
    Phys Chem Chem Phys; 2018 Jun; 20(22):15223-15235. PubMed ID: 29789835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant Effect on Hydrate Crystallization at the Oil-Water Interface.
    Dann K; Rosenfeld L
    Langmuir; 2018 May; 34(21):6085-6094. PubMed ID: 29742353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surfactant on gas bubble stability.
    Hanwright J; Zhou J; Evans GM; Galvin KP
    Langmuir; 2005 May; 21(11):4912-20. PubMed ID: 15896031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.