These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35529899)
1. Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks. Tomovski I; Basnarkov L; Abazi A Physica A; 2022 Aug; 599():127480. PubMed ID: 35529899 [TBL] [Abstract][Full Text] [Related]
2. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks. Liu Q; Van Mieghem P Phys Rev E; 2018 Feb; 97(2-1):022309. PubMed ID: 29548175 [TBL] [Abstract][Full Text] [Related]
3. Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks. Feng M; Cai SM; Tang M; Lai YC Nat Commun; 2019 Aug; 10(1):3748. PubMed ID: 31444336 [TBL] [Abstract][Full Text] [Related]
4. Equivalence between Non-Markovian and Markovian Dynamics in Epidemic Spreading Processes. Starnini M; Gleeson JP; Boguñá M Phys Rev Lett; 2017 Mar; 118(12):128301. PubMed ID: 28388191 [TBL] [Abstract][Full Text] [Related]
5. Analysis of continuous-time Markovian ɛ-SIS epidemics on networks. Achterberg MA; Prasse B; Van Mieghem P Phys Rev E; 2022 May; 105(5-1):054305. PubMed ID: 35706221 [TBL] [Abstract][Full Text] [Related]
6. Explicit non-Markovian susceptible-infected-susceptible mean-field epidemic threshold for Weibull and Gamma infections but Poisson curings. Van Mieghem P; Liu Q Phys Rev E; 2019 Aug; 100(2-1):022317. PubMed ID: 31574702 [TBL] [Abstract][Full Text] [Related]
7. Non-Markovian SIR epidemic spreading model of COVID-19. Basnarkov L; Tomovski I; Sandev T; Kocarev L Chaos Solitons Fractals; 2022 Jul; 160():112286. PubMed ID: 35694643 [TBL] [Abstract][Full Text] [Related]
8. Markovian Approach for Exploring Competitive Diseases with Heterogeneity-Evidence from COVID-19 and Influenza in China. Gao X; Xu Y Bull Math Biol; 2024 May; 86(6):71. PubMed ID: 38719993 [TBL] [Abstract][Full Text] [Related]
9. Survival time of the susceptible-infected-susceptible infection process on a graph. van de Bovenkamp R; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032806. PubMed ID: 26465527 [TBL] [Abstract][Full Text] [Related]
10. A Markovian random walk model of epidemic spreading. Bestehorn M; Riascos AP; Michelitsch TM; Collet BA Contin Mech Thermodyn; 2021; 33(4):1207-1221. PubMed ID: 34776647 [TBL] [Abstract][Full Text] [Related]
11. Human mobility and time spent at destination: impact on spatial epidemic spreading. Poletto C; Tizzoni M; Colizza V J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488 [TBL] [Abstract][Full Text] [Related]
12. Spectral Analysis of Epidemic Thresholds of Temporal Networks. Zhang YQ; Li X; Vasilakos AV IEEE Trans Cybern; 2020 May; 50(5):1965-1977. PubMed ID: 28910782 [TBL] [Abstract][Full Text] [Related]
13. The deterministic SIS epidemic model in a Markovian random environment. Economou A; Lopez-Herrero MJ J Math Biol; 2016 Jul; 73(1):91-121. PubMed ID: 26515172 [TBL] [Abstract][Full Text] [Related]
14. An application of queuing theory to SIS and SEIS epidemic models. Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709 [TBL] [Abstract][Full Text] [Related]
15. Exact and approximate moment closures for non-Markovian network epidemics. Pellis L; House T; Keeling MJ J Theor Biol; 2015 Oct; 382():160-77. PubMed ID: 25975999 [TBL] [Abstract][Full Text] [Related]
16. Simulating non-Markovian stochastic processes. Boguñá M; Lafuerza LF; Toral R; Serrano MÁ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042108. PubMed ID: 25375439 [TBL] [Abstract][Full Text] [Related]
17. Explosive phase transition in susceptible-infected-susceptible epidemics with arbitrary small but nonzero self-infection rate. Van Mieghem P Phys Rev E; 2020 Mar; 101(3-1):032303. PubMed ID: 32289894 [TBL] [Abstract][Full Text] [Related]
18. Self-adapting infectious dynamics on random networks. Clauß K; Kuehn C Chaos; 2023 Sep; 33(9):. PubMed ID: 37695925 [TBL] [Abstract][Full Text] [Related]
19. A non-standard discretized SIS model of epidemics. Choiński M; Bodzioch M; Foryś U Math Biosci Eng; 2022 Jan; 19(1):115-133. PubMed ID: 34902983 [TBL] [Abstract][Full Text] [Related]
20. Epidemic spreading on multi-layer networks with active nodes. Zhang H; Cao L; Fu C; Cai S; Gao Y Chaos; 2023 Jul; 33(7):. PubMed ID: 37459223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]