These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35529992)

  • 1. Influence of water evaporation/absorption on the stability of glycerol-water marbles.
    Lin X; Ma W; Chen L; Huang L; Wu H; Takahara A
    RSC Adv; 2019 Oct; 9(59):34465-34471. PubMed ID: 35529992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcapsules fabricated from liquid marbles stabilized with latex particles.
    Ueno K; Hamasaki S; Wanless EJ; Nakamura Y; Fujii S
    Langmuir; 2014 Mar; 30(11):3051-9. PubMed ID: 24588749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation rate of graphite liquid marbles: comparison with water droplets.
    Dandan M; Erbil HY
    Langmuir; 2009 Jul; 25(14):8362-7. PubMed ID: 19499944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid marbles prepared from pH-responsive sterically stabilized latex particles.
    Fujii S; Suzaki M; Armes SP; Dupin D; Hamasaki S; Aono K; Nakamura Y
    Langmuir; 2011 Jul; 27(13):8067-74. PubMed ID: 21631122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical liquid marbles formed using floating hydrophobic powder and levitating water droplets.
    Kumar Roy P; Binks BP; Shoval S; Dombrovsky LA; Bormashenko E
    J Colloid Interface Sci; 2022 Nov; 626():466-474. PubMed ID: 35803145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid marbles prepared from pH-responsive self-assembled micelles.
    Sun J; Wei W; Zhao D; Hu Q; Liu X
    Soft Matter; 2015 Mar; 11(10):1954-61. PubMed ID: 25621854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How particle-particle and liquid-particle interactions govern the fate of evaporating liquid marbles.
    Gallo A; Tavares F; Das R; Mishra H
    Soft Matter; 2021 Sep; 17(33):7628-7644. PubMed ID: 34318861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.
    Rykaczewski K; Chinn J; Walker ML; Scott JH; Chinn A; Jones W
    ACS Nano; 2011 Dec; 5(12):9746-54. PubMed ID: 22035295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles.
    Asaumi Y; Rey M; Vogel N; Nakamura Y; Fujii S
    Langmuir; 2020 Mar; 36(10):2695-2706. PubMed ID: 32078776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-based liquid marbles as microreactors for the silver mirror reaction.
    Sheng Y; Sun G; Wu J; Ma G; Ngai T
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7012-7. PubMed ID: 25924973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation dynamics of liquid marbles at elevated temperatures.
    Sreejith KR; Ooi CH; Dao DV; Nguyen NT
    RSC Adv; 2018 Apr; 8(28):15436-15443. PubMed ID: 35539462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid Marbles Stabilized by Fluorine-Bearing Cyclomatrix Polyphosphazene Particles and Their Application as High-Efficiency Miniature Reactors.
    Wei W; Lu R; Ye W; Sun J; Zhu Y; Luo J; Liu X
    Langmuir; 2016 Feb; 32(7):1707-15. PubMed ID: 26854870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responsive Photonic Liquid Marbles.
    Anyfantakis M; Jampani VSR; Kizhakidathazhath R; Binks BP; Lagerwall JPF
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19260-19267. PubMed ID: 32686264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetothermal Miniature Reactors Based on Fe
    Li H; Liu P; Gunawan R; Simeneh ZM; Liang C; Yao X; Yang M
    Adv Healthc Mater; 2021 Mar; 10(6):e2001658. PubMed ID: 33470539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental Sulfur-Stabilized Liquid Marbles: Properties and Applications.
    Salehabad SM; Azizian S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43201-43211. PubMed ID: 32852186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Effects of Liquid Marbles' Deformation on Their Rolling Resistance.
    Sun Y; Zhao M; Th Tee CA; Song L; Guo J; Pan J; Liu C; Zhang S; Zheng Y
    Langmuir; 2023 Nov; 39(46):16618-16627. PubMed ID: 37934203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millimeter-sized capsules prepared using liquid marbles: Encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force.
    Takei T; Yamasaki Y; Yuji Y; Sakoguchi S; Ohzuno Y; Hayase G; Yoshida M
    J Colloid Interface Sci; 2019 Feb; 536():414-423. PubMed ID: 30380441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface roughness on the solar evaporation of liquid marbles.
    Feng Y; Yao G; Xu J; Wang L; Liu G
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):644-653. PubMed ID: 36182756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically responsive dry cholesteric liquid crystal marbles.
    Kocaman C; Batir O; Bukusoglu E
    J Colloid Interface Sci; 2024 Oct; 671():374-384. PubMed ID: 38815373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Marbles: Much Stronger than Liquid Marbles.
    Timounay Y; Pitois O; Rouyer F
    Phys Rev Lett; 2017 Jun; 118(22):228001. PubMed ID: 28621975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.