These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35530006)

  • 1. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings.
    Subhan FE; Khan AD; Hilal FE; Khan AD; Khan SD; Ullah R; Imran M; Noman M
    RSC Adv; 2020 Mar; 10(20):11836-11842. PubMed ID: 35496636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure-Graphene Oxide-Gold Nanoparticle Composite.
    Behera S; Kim C; Kim K
    Langmuir; 2020 Oct; 36(42):12494-12503. PubMed ID: 33049134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles.
    Chen X; Jia B; Saha JK; Cai B; Stokes N; Qiao Q; Wang Y; Shi Z; Gu M
    Nano Lett; 2012 May; 12(5):2187-92. PubMed ID: 22300399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array.
    Tharwat MM; Almalki A; Mahros AM
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband and wide-angle light absorption of organic solar cells based on multiple-depths metal grating.
    Liu X; Wang D; Yang Y; Chen ZH; Fei H; Cao B; Zhang M; Cui Y; Hao Y; Jian A
    Opt Express; 2019 Jun; 27(12):A596-A610. PubMed ID: 31252840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.
    Sun C; Qin C; Zhai H; Zhang B; Wu X
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles.
    Chaudhry FA; Escandell L; López-Fraguas E; Vergaz R; Sánchez-Pena JM; García-Cámara B
    Sci Rep; 2022 Jun; 12(1):9240. PubMed ID: 35655090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion.
    Ma C; Yan J; Huang Y; Wang C; Yang G
    Sci Adv; 2018 Aug; 4(8):eaas9894. PubMed ID: 30105303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.