These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35530006)

  • 21. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes.
    Hylton NP; Li XF; Giannini V; Lee KH; Ekins-Daukes NJ; Loo J; Vercruysse D; Van Dorpe P; Sodabanlu H; Sugiyama M; Maier SA
    Sci Rep; 2013 Oct; 3():2874. PubMed ID: 24096686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly absorbing solar cells--a survey of plasmonic nanostructures.
    Dunbar RB; Pfadler T; Schmidt-Mende L
    Opt Express; 2012 Mar; 20 Suppl 2():A177-89. PubMed ID: 22418666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer.
    Liu K; Bi Y; Qu S; Tan F; Chi D; Lu S; Li Y; Kou Y; Wang Z
    Nanoscale; 2014 Jun; 6(11):6180-6. PubMed ID: 24796321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells.
    Tanabe K
    Nanoscale Res Lett; 2016 Dec; 11(1):236. PubMed ID: 27142874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells.
    Yu P; Yao Y; Wu J; Niu X; Rogach AL; Wang Z
    Sci Rep; 2017 Aug; 7(1):7696. PubMed ID: 28794487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling plasmonic scattering combined with thin-film optics.
    Schmid M; Klenk R; Lux-Steiner MCh; Topic M; Krc J
    Nanotechnology; 2011 Jan; 22(2):025204. PubMed ID: 21135483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400-800 nm.
    Tan F; Li T; Wang N; Lai SK; Tsoi CC; Yu W; Zhang X
    Sci Rep; 2016 Sep; 6():33049. PubMed ID: 27608836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures.
    He Z; Gu JH; Sha WEI; Chen RS
    Opt Express; 2018 Sep; 26(19):25037-25046. PubMed ID: 30469612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incident angle dependence of absorption enhancement in plasmonic solar cells.
    Yang M; Fu Z; Lin F; Zhu X
    Opt Express; 2011 Jul; 19 Suppl 4():A763-71. PubMed ID: 21747545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells.
    Yao K; Zhong H; Liu Z; Xiong M; Leng S; Zhang J; Xu YX; Wang W; Zhou L; Huang H; Jen AK
    ACS Nano; 2019 May; 13(5):5397-5409. PubMed ID: 31017763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband Absorption Based on Thin Refractory Titanium Nitride Patterned Film Metasurface.
    Huo D; Ma X; Su H; Wang C; Zhao H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array.
    Yi Z; Li J; Lin J; Qin F; Chen X; Yao W; Liu Z; Cheng S; Wu P; Li H
    Nanoscale; 2020 Nov; 12(45):23077-23083. PubMed ID: 33179661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
    Hägglund C; Kasemo B
    Opt Express; 2009 Jul; 17(14):11944-57. PubMed ID: 19582109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic nanoparticle-film-assisted photoelectrochemical catalysis across the entire visible-NIR region.
    Zhang J; Sun Y; Feng R; Liang W; Liang Z; Guo W; Abdulhalim I; Qu J; Qiu CW; Jiang L
    Nanoscale; 2019 Dec; 11(47):23058-23064. PubMed ID: 31774083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation.
    Chen J; Feng J; Li Z; Xu P; Wang X; Yin W; Wang M; Ge X; Yin Y
    Nano Lett; 2019 Jan; 19(1):400-407. PubMed ID: 30561210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.