These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35530006)

  • 41. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping.
    Zhu SQ; Bian B; Zhu YF; Yang J; Zhang D; Feng L
    Front Chem; 2019; 7():137. PubMed ID: 30941345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals.
    Hsieh ML; Kaiser A; Bhattacharya S; John S; Lin SY
    Sci Rep; 2020 Jul; 10(1):11857. PubMed ID: 32678229
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles.
    Qu D; Liu F; Huang Y; Xie W; Xu Q
    Opt Express; 2011 Nov; 19(24):24795-803. PubMed ID: 22109507
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency.
    Song DH; Kim HS; Suh JS; Jun BH; Rho WY
    Nanomaterials (Basel); 2017 Jun; 7(6):. PubMed ID: 28587217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays.
    Wang W; Zhang J; Che X; Qin G
    Sci Rep; 2016 Oct; 6():34219. PubMed ID: 27703176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating.
    Heidarzadeh H; Rostami A; Dolatyari M; Rostami G
    Appl Opt; 2016 Mar; 55(7):1779-85. PubMed ID: 26974643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmonic protein electricity generator.
    Paul N; Suresh L; Chen Y; Zhang Y; Alzakia FI; Vogt V; Jones MR; Wong ZJ; Tan SC
    Nanoscale Horiz; 2022 Jan; 7(2):220-234. PubMed ID: 35043802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing Output Power of Textured Silicon Solar Cells by Embedding Indium Plasmonic Nanoparticles in Layers within Antireflective Coating.
    Ho WJ; Liu JJ; Yang YC; Ho CH
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30518057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hot Carrier Extraction with Plasmonic Broadband Absorbers.
    Ng C; Cadusch JJ; Dligatch S; Roberts A; Davis TJ; Mulvaney P; Gómez DE
    ACS Nano; 2016 Apr; 10(4):4704-11. PubMed ID: 26982625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nano-plasmonic Bundt Optenna for broadband polarization-insensitive and enhanced infrared detection.
    Awad E
    Sci Rep; 2019 Aug; 9(1):12197. PubMed ID: 31434970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.
    Lu L; Luo Z; Xu T; Yu L
    Nano Lett; 2013 Jan; 13(1):59-64. PubMed ID: 23237567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Size-Dependent Localized Surface Plasma Resonance of Au Nanoparticles in Au/ZnO Photoanodes for Dye-Sensitized Solar Cells.
    Chang WC; Wan-Chin Y; Lin LY; Yu YJ; Peng YM
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2431-437. PubMed ID: 29648742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.