These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 35530218)

  • 61. Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries.
    Jiang Y; Lu J; Liu W; Xing C; Lu S; Liu X; Xu Y; Zhang J; Zhao B
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17415-17425. PubMed ID: 35389628
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sodium-Ion Substituted Water Molecule in Layered Vanadyl Phosphate Enhancing Electrochemical Kinetics and Stability of Zinc Ion Storage.
    Wu Y; Zong Q; Liu C; Zhuang Y; Tao D; Wang J; Zhang J; Zhang Q; Cao G
    Small; 2023 Oct; 19(40):e2303227. PubMed ID: 37264764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design Strategy of High Stability Vertically Aligned RGO@V
    Zhong X; Kong Z; Liu Q; Yang C; Chen Y; Qiu J; Zang L
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58333-58344. PubMed ID: 38052448
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cations-Pillared and Polyaniline-Encapsulated Vanadate Cathode for High-Performance Aqueous Zinc-Ion Batteries.
    Ni M; Qin M; Chang H; Shi X; Pei B; Liang S; Cao X
    ChemSusChem; 2024 Apr; ():e202400526. PubMed ID: 38679575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molten Salt Thermal Treatment Synthesis of S-Doped V
    Jiang W; Shi H; Shen M; Tang R; Tang Z; Wang JQ
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14482-14491. PubMed ID: 35275611
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries.
    Wang Z; Rafai S; Qiao C; Jia J; Zhu Y; Ma X; Cao C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7046-7054. PubMed ID: 30667214
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Van der Waals Interaction-Driven Self-Assembly of V
    Liu H; Jiang L; Cao B; Du H; Lu H; Ma Y; Wang H; Guo H; Huang Q; Xu B; Guo S
    ACS Nano; 2022 Sep; 16(9):14539-14548. PubMed ID: 36067370
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Crystal water intercalated interlayer expanded MoS
    Hariram M; Kumar M; Awasthi K; Sarkar D; Menezes PW
    Dalton Trans; 2023 Sep; 52(36):12755-12762. PubMed ID: 37614185
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oxygen Vacancies on NH
    Peng Y; Mo L; Wei T; Wang Y; Zhang X; Li Z; Huang Y; Yang G; Hu L
    Small; 2024 Mar; 20(11):e2306972. PubMed ID: 38143291
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Solvothermal Guided V
    Jia X; Yan K; Sun Y; Chen Y; Tang Y; Pan J; Wan P
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612173
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ construction of ball-in-ball structured porous vanadium pentoxide intertwined with carbon fibers induces superior electronic/ionic transport dynamics for aqueous zinc-ion batteries.
    Xiong L; Qu Z; Shen Z; Yuan G; Wang G; Wang B; Wang H; Bai J
    J Colloid Interface Sci; 2022 Jun; 615():184-195. PubMed ID: 35131500
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Controllable Preparation of V
    Liu Y; Wang Y; Zhang Y; Liang S; Pan A
    Nanoscale Res Lett; 2016 Dec; 11(1):549. PubMed ID: 27957728
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries.
    Huang JQ; Guo X; Lin X; Zhu Y; Zhang B
    Research (Wash D C); 2019; 2019():2635310. PubMed ID: 31912030
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35837-35847. PubMed ID: 34297523
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reduced Intercalation Energy Barrier by Rich Structural Water in Spinel ZnMn
    Wu TH; Liang WY
    ACS Appl Mater Interfaces; 2021 May; 13(20):23822-23832. PubMed ID: 33974402
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxygenated copper vanadium selenide composite nanostructures as a cathode material for zinc-ion batteries with high stability up to 10 000 cycles.
    Narsimulu D; Krishna BNV; Shanthappa R; Yu JS
    Nanoscale; 2023 Feb; 15(8):3978-3990. PubMed ID: 36723257
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions.
    Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Constructing metal-organic framework-derived Mn
    Wang JW; Yuan YF; Zhang D; Zhu M; Mo CL; Guo SY
    Nanotechnology; 2021 Aug; 32(43):. PubMed ID: 34280901
    [TBL] [Abstract][Full Text] [Related]  

  • 79. How About Vanadium-Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?
    Lv T; Peng Y; Zhang G; Jiang S; Yang Z; Yang S; Pang H
    Adv Sci (Weinh); 2023 Apr; 10(12):e2206907. PubMed ID: 36683227
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-Performance Layered CaV
    Fang L; Lin L; Wu Z; Xu T; Wang X; Chang L; Nie P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.