These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35531519)
1. Structure, optical simulation and thermal stability of the HfB Qiu XL; Gao XH; He CY; Chen BH; Liu G RSC Adv; 2019 Sep; 9(51):29726-29733. PubMed ID: 35531519 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber. Selvakumar N; Krupanidhi SB; Barshilia HC Adv Mater; 2014 Apr; 26(16):2552-7. PubMed ID: 24474148 [TBL] [Abstract][Full Text] [Related]
3. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2 -Si3N4. Hernández-Pinilla D; Rodríguez-Palomo A; Álvarez-Fraga L; Céspedes E; Prieto JE; Muñoz-Martín A; Prieto C Data Brief; 2016 Jun; 7():1483-5. PubMed ID: 27182544 [TBL] [Abstract][Full Text] [Related]
4. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding. Pang X; Wei Q; Zhou J; Ma H Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921783 [TBL] [Abstract][Full Text] [Related]
5. High-Performance Spectrally Selective Absorber Using the ZrB Wang J; Ren Z; Luo Y; Wu Z; Liu Y; Hou S; Liu X; Zhang Q; Cao F ACS Appl Mater Interfaces; 2021 Sep; 13(34):40522-40530. PubMed ID: 34407618 [TBL] [Abstract][Full Text] [Related]
6. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability. Zhou WX; Shen Y; Hu ET; Zhao Y; Sheng MY; Zheng YX; Wang SY; Lee YP; Wang CZ; Lynch DW; Chen LY Opt Express; 2012 Dec; 20(27):28953-62. PubMed ID: 23263136 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Characterization of Multilayered CrAlN/Al Sanchez-Perez M; Rojas TC; Reyes DF; Ferrer FJ; Farchado M; Morales A; Escobar-Galindo R; Sanchez-Lopez JC ACS Appl Energy Mater; 2024 Jan; 7(2):438-449. PubMed ID: 38273967 [TBL] [Abstract][Full Text] [Related]
8. Microstructure and Thermal Stability of Cu/Ti Yu H; Zhang Y; Zhang Q; Pang W; Yan H; Li G Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079134 [TBL] [Abstract][Full Text] [Related]
9. Thermal Stability of Chromium-Iron Oxidation Mixture Cermet-Based Solar Selective Absorbing Coatings. Yu H; Li J; Zhang Q; Pang W; Yan H; Li G Molecules; 2020 Mar; 25(5):. PubMed ID: 32151026 [TBL] [Abstract][Full Text] [Related]
10. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber. Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261 [TBL] [Abstract][Full Text] [Related]
11. A New High-Temperature Durable Absorber Material Solution through a Spinel-Type High Solar Absorptivity Coating on Ti Wang W; Ye F; Mu W; Dutta J; Laumert B ACS Appl Mater Interfaces; 2021 Sep; 13(37):45008-45017. PubMed ID: 34494820 [TBL] [Abstract][Full Text] [Related]
12. Thermal Stability and Weather Resistance of a Bionic Lotus Multiscale Micro-Nanostructure TiC/TiN-Ni/Mo Spectral Selective Absorber Based on Laser Cladding-Induced Melt Foaming. Pang X; Li B; Gao S; Liu G ACS Appl Mater Interfaces; 2024 Feb; 16(6):7860-7874. PubMed ID: 38311837 [TBL] [Abstract][Full Text] [Related]
13. A Feasible and Promising Strategy for Improving the Solar Selectivity and Thermal Stability of Cermet-Based Photothermal Conversion Coatings. Wang X; Kang Y; Yuan X; Gong D; Li K Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234192 [TBL] [Abstract][Full Text] [Related]
14. Bottom-Up Synthesis and Mechanical Behavior of Refractory Coatings Made of Carbon Nanotube-Hafnium Diboride Composites. Sandin C; Talukdar TK; Abelson JR; Tawfick S ACS Appl Mater Interfaces; 2019 Jan; 11(1):1487-1495. PubMed ID: 30543416 [TBL] [Abstract][Full Text] [Related]
15. Air-Stability Improvement of Solar Selective Absorbers Based on TiW-SiO Yang J; Shen H; Yang Z; Gao K ACS Appl Mater Interfaces; 2021 Mar; 13(12):14587-14598. PubMed ID: 33740376 [TBL] [Abstract][Full Text] [Related]
16. Highly Corrosion Resistant and Sandwich-like Si Zhang K; Du M; Haoa L; Meng J; Wang J; Mi J; Liu X ACS Appl Mater Interfaces; 2016 Dec; 8(49):34008-34018. PubMed ID: 27960383 [TBL] [Abstract][Full Text] [Related]
17. A Highly Stable and Sustainable Low-Temperature Selective Absorber: Structural and Ageing Characterisation. Farchado M; San Vicente G; Germán N; Maffiotte C; Morales Á Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629465 [TBL] [Abstract][Full Text] [Related]
18. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion. Mandal J; Wang D; Overvig AC; Shi NN; Paley D; Zangiabadi A; Cheng Q; Barmak K; Yu N; Yang Y Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28845533 [TBL] [Abstract][Full Text] [Related]
19. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C. Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608 [TBL] [Abstract][Full Text] [Related]
20. Investigation on heat transfer enhancement of conventional and staggered fin solar air heater coated with CNT-black paint-an experimental approach. Madhu B; Kabeel AE; Sathyamurthy R; Sharshir SW; Manokar AM; Raghavendran PR; Chandrashekar T; Mageshbabu D Environ Sci Pollut Res Int; 2020 Sep; 27(26):32251-32269. PubMed ID: 31902081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]