BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35531933)

  • 21. Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.
    Pitrolino KA; Felfel RM; Pellizzeri LM; McLaren J; Popov AA; Sottile V; Scotchford CA; Scammell BE; Roberts GAF; Grant DM
    Carbohydr Polym; 2022 Apr; 282():119126. PubMed ID: 35123750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair.
    Hu X; Zheng S; Zhang R; Wang Y; Jiao Z; Li W; Nie Y; Liu T; Song K
    Biomater Adv; 2022 Feb; 133():112662. PubMed ID: 35074237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Strength, Biomimetic Functional Chitosan-Based Hydrogels for Full-Thickness Osteochondral Defect Repair.
    Fang J; Liao J; Zhong C; Lu X; Ren F
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4449-4461. PubMed ID: 36070613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.
    Castro NJ; O'Brien J; Zhang LG
    Nanoscale; 2015 Sep; 7(33):14010-22. PubMed ID: 26234364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromagnetic field-mediated chitosan/gelatin/nano-hydroxyapatite and bone-derived scaffolds regulate the osteoblastic and chondrogenic phenotypes of adipose-derived stem cells to construct osteochondral tissue engineering niche in vitro.
    Hu X; Su Y; Xu J; Cheng YY; Liu T; Li X; Ma X; Chen Z; Song K
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128829. PubMed ID: 38128807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair.
    Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H
    Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired mineral-polymeric hybrid hyaluronic acid/poly (γ-glutamic acid) hydrogels as tunable scaffolds for stem cells differentiation.
    Liu S; Li P; Liu X; Wang P; Xue W; Ren Y; Yang R; Chi B; Ye Z
    Carbohydr Polym; 2021 Jul; 264():118048. PubMed ID: 33910750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration.
    Gu L; Zhang J; Li L; Du Z; Cai Q; Yang X
    Biomed Mater; 2019 Apr; 14(4):045001. PubMed ID: 30939454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed composite scaffold with gradient structure and programmed biomolecule delivery to guide stem cell behavior for osteochondral regeneration.
    Wang Y; Ling C; Chen J; Liu H; Mo Q; Zhang W; Yao Q
    Biomater Adv; 2022 Sep; 140():213067. PubMed ID: 35961187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repair of osteochondral defects mediated by double-layer scaffolds with natural osteochondral-biomimetic microenvironment and interface.
    Wang T; Xu W; Zhao X; Bai B; Hua Y; Tang J; Chen F; Liu Y; Wang Y; Zhou G; Cao Y
    Mater Today Bio; 2022 Mar; 14():100234. PubMed ID: 35308043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit.
    Qu D; Li J; Li Y; Khadka A; Zuo Y; Wang H; Liu Y; Cheng L
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):9-15. PubMed ID: 20967773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect.
    Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model.
    Lam J; Lu S; Lee EJ; Trachtenberg JE; Meretoja VV; Dahlin RL; van den Beucken JJ; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1291-300. PubMed ID: 25008204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. nHA-loaded gelatin/alginate hydrogel with combined physical and bioactive features for maxillofacial bone repair.
    Zhou X; Sun J; Wo K; Wei H; Lei H; Zhang J; Lu X; Mei F; Tang Q; Wang Y; Luo Z; Fan L; Chu Y; Chen L
    Carbohydr Polym; 2022 Dec; 298():120127. PubMed ID: 36241299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A One-Stone-Two-Birds Strategy for Osteochondral Regeneration Based on a 3D Printable Biomimetic Scaffold with Kartogenin Biochemical Stimuli Gradient.
    Wei W; Liu W; Kang H; Zhang X; Yu R; Liu J; Huang K; Zhang Y; Xie M; Hu Y; Dai H
    Adv Healthc Mater; 2023 Jun; 12(15):e2300108. PubMed ID: 36763493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations.
    Sartori M; Pagani S; Ferrari A; Costa V; Carina V; Figallo E; Maltarello MC; Martini L; Fini M; Giavaresi G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):101-111. PubMed ID: 27770869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.