These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35531933)

  • 61. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.
    Browe DC; Díaz-Payno PJ; Freeman FE; Schipani R; Burdis R; Ahern DP; Nulty JM; Guler S; Randall LD; Buckley CT; Brama PAJ; Kelly DJ
    Acta Biomater; 2022 Apr; 143():266-281. PubMed ID: 35278686
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clinical Study of Autologous Cartilage Transplantation Based on Nano-Hydroxyapatite in the Treatment of Talar Osteochondral Injury.
    Wang W; Wang X; Wang Y; Tong C
    J Nanosci Nanotechnol; 2021 Feb; 21(2):1250-1258. PubMed ID: 33183469
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration.
    Zhou X; Esworthy T; Lee SJ; Miao S; Cui H; Plesiniak M; Fenniri H; Webster T; Rao RD; Zhang LG
    Nanomedicine; 2019 Jul; 19():58-70. PubMed ID: 31004813
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A composite bilayer scaffold functionalized for osteochondral tissue regeneration in rat animal model.
    Abedin Dargoush S; Hanaee-Ahvaz H; Irani S; Soleimani M; Khatami SM; Sohi AN
    J Tissue Eng Regen Med; 2022 Jun; 16(6):559-574. PubMed ID: 35319813
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels.
    Lam J; Lu S; Meretoja VV; Tabata Y; Mikos AG; Kasper FK
    Acta Biomater; 2014 Mar; 10(3):1112-23. PubMed ID: 24300948
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Implementation of Photosensitive, Injectable, Interpenetrating, and Kartogenin-Modified GELMA/PEDGA Biomimetic Scaffolds to Restore Cartilage Integrity in a Full-Thickness Osteochondral Defect Model.
    Yu H; Feng M; Mao G; Li Q; Zhang Z; Bian W; Qiu Y
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4474-4485. PubMed ID: 36074133
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Gradient Mineralized and Porous Double-Network Hydrogel Effectively Induce the Differentiation of BMSCs into Osteochondral Tissue In Vitro for Potential Application in Cartilage Repair.
    Fan Z; Chen Z; Zhang H; Nie Y; Xu S
    Macromol Biosci; 2021 Mar; 21(3):e2000323. PubMed ID: 33356012
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.
    Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J
    Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Composite Spheroid-Laden Bilayer Hydrogel for Engineering Three-Dimensional Osteochondral Tissue.
    Lee J; Lee E; Huh SJ; Kang JI; Park KM; Byun H; Lee S; Kim E; Shin H
    Tissue Eng Part A; 2024 Mar; 30(5-6):225-243. PubMed ID: 38062771
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient.
    Jin L; Zhao W; Ren B; Li L; Hu X; Zhang X; Cai Q; Ao Y; Yang X
    Biomed Mater; 2019 Nov; 14(6):065017. PubMed ID: 31574486
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair.
    Yu Y; Wang Y; Zhang W; Wang H; Li J; Pan L; Han F; Li B
    Acta Biomater; 2020 Sep; 113():317-327. PubMed ID: 32574859
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model.
    Wang DX; He Y; Bi L; Qu ZH; Zou JW; Pan Z; Fan JJ; Chen L; Dong X; Liu XN; Pei GX; Ding JD
    Int J Nanomedicine; 2013; 8():1855-65. PubMed ID: 23690683
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction.
    Pu X; Tong L; Wang X; Liu Q; Chen M; Li X; Lu G; Lan W; Li Q; Liang J; Sun Y; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20591-20602. PubMed ID: 35500105
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell-Free Biomimetic Scaffold with Cartilage Extracellular Matrix-Like Architectures for
    Zhang W; Ling C; Li X; Sheng R; Liu H; Zhang A; Jiang Y; Chen J; Yao Q
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6917-6925. PubMed ID: 33320617
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multileveled Hierarchical Hydrogel with Continuous Biophysical and Biochemical Gradients for Enhanced Repair of Full-Thickness Osteochondral Defect.
    Zhang L; Dai W; Gao C; Wei W; Huang R; Zhang X; Yu Y; Yang X; Cai Q
    Adv Mater; 2023 May; 35(19):e2209565. PubMed ID: 36870325
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integrated osteochondral differentiation of mesenchymal stem cells on biomimetic nanofibrous mats with cell adhesion-generated piezopotential gradients.
    Liu Q; Xie S; Fan D; Xie T; Xue G; Gou X; Li X
    Nanoscale; 2022 Mar; 14(10):3865-3877. PubMed ID: 35201252
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel β-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair.
    Yao H; Kang J; Li W; Liu J; Xie R; Wang Y; Liu S; Wang DA; Ren L
    Biomed Mater; 2017 Dec; 13(1):015012. PubMed ID: 28792423
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.