These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35532091)

  • 1. Extraction and Surfactant Properties of Glyoxylic Acid-Functionalized Lignin.
    Bertella S; Bernardes Figueirêdo M; De Angelis G; Mourez M; Bourmaud C; Amstad E; Luterbacher JS
    ChemSusChem; 2022 Aug; 15(15):e202200270. PubMed ID: 35532091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-grafted lignin surfactants prepared via reversible addition-fragmentation chain-transfer polymerization.
    Gupta C; Washburn NR
    Langmuir; 2014 Aug; 30(31):9303-12. PubMed ID: 25046477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Conversion of Lignocellulosic Biomass to Bio-Based Amphiphiles using a Functionalization-Defunctionalization Approach.
    Sun S; De Angelis G; Bertella S; Jones MJ; Dick GR; Amstad E; Luterbacher JS
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202312823. PubMed ID: 38010646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing interactions between soluble silk fibroin and capryl glucoside for design of a natural and high-performance co-surfactant system.
    Maxwell R; Costache MC; Giarrosso A; Bosques C; Amin S
    Int J Cosmet Sci; 2021 Feb; 43(1):68-77. PubMed ID: 33259636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surfactant on hydrothermal carbonization of coconut shell.
    Tu R; Sun Y; Wu Y; Fan X; Wang J; Shen X; He Z; Jiang E; Xu X
    Bioresour Technol; 2019 Jul; 284():214-221. PubMed ID: 30939383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.
    Fritz C; Ferrer A; Salas C; Jameel H; Rojas OJ
    Biomacromolecules; 2015 Dec; 16(12):3878-88. PubMed ID: 26565921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oleogels and reverse emulsions stabilized by acetylated Kraft lignins.
    Borrero-López AM; Wang L; Li H; Lourençon TV; Valencia C; Franco JM; Rojas OJ
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124941. PubMed ID: 37210063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils.
    Li S; Ogunkoya D; Fang T; Willoughby J; Rojas OJ
    J Colloid Interface Sci; 2016 Nov; 482():27-38. PubMed ID: 27485502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes.
    Yuliestyan A; Partal P; Navarro FJ; Martín-Sampedro R; Ibarra D; Eugenio ME
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil-in-Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects.
    Li S; Willoughby JA; Rojas OJ
    ChemSusChem; 2016 Sep; 9(17):2460-9. PubMed ID: 27491347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin.
    Jiang F; Qian C; Esker AR; Roman M
    J Phys Chem B; 2017 Oct; 121(41):9607-9620. PubMed ID: 28926703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass.
    Lee S; Akeprathumchai S; Bundidamorn D; Salaipeth L; Poomputsa K; Ratanakhanokchai K; Chang KL; Phitsuwan P
    Bioengineered; 2021 Dec; 12(1):5110-5124. PubMed ID: 34369275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Adsorption of Oil-Soluble Kraft Lignin and Stabilization of Water-in-Oil Emulsions.
    Ruwoldt J; Handiso B; Øksnes Dalheim M; Solberg A; Simon S; Syverud K
    Langmuir; 2024 Mar; 40(10):5409-5419. PubMed ID: 38424003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The isolation of lignin with native-like structure.
    Wang Z; Deuss PJ
    Biotechnol Adv; 2023 Nov; 68():108230. PubMed ID: 37558187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable Amphoteric Surfactants in Titration-Ultrasound Formulation of Oil-in-Water Nanoemulsions: Rational Design, Development, and Kinetic Stability.
    Waglewska E; Bazylińska U
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).
    Silmore KS; Gupta C; Washburn NR
    J Colloid Interface Sci; 2016 Mar; 466():91-100. PubMed ID: 26707776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidic pretreatment of wheat straw in decanol for the production of surfactant, lignin and glucose.
    Marinkovic S; Le Bras J; Nardello-Rataj V; Agach M; Estrine B
    Int J Mol Sci; 2012; 13(1):348-57. PubMed ID: 22312256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. About Making Lignin Great Again-Some Lessons From the Past.
    Glasser WG
    Front Chem; 2019; 7():565. PubMed ID: 31555636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.