These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35532268)
1. Profiling of H3K4me3 Modification in Plants using Cleavage under Targets and Tagmentation. Tao X; Gao M; Wang S; Guan X J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532268 [TBL] [Abstract][Full Text] [Related]
2. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Kaya-Okur HS; Wu SJ; Codomo CA; Pledger ES; Bryson TD; Henikoff JG; Ahmad K; Henikoff S Nat Commun; 2019 Apr; 10(1):1930. PubMed ID: 31036827 [TBL] [Abstract][Full Text] [Related]
3. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K Elife; 2020 Nov; 9():. PubMed ID: 33191916 [TBL] [Abstract][Full Text] [Related]
4. Simplified Epigenome Profiling Using Antibody-tethered Tagmentation. Henikoff S; Henikoff JG; Ahmad K Bio Protoc; 2021 Jun; 11(11):e4043. PubMed ID: 34250209 [TBL] [Abstract][Full Text] [Related]
5. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Carter B; Ku WL; Kang JY; Hu G; Perrie J; Tang Q; Zhao K Nat Commun; 2019 Aug; 10(1):3747. PubMed ID: 31431618 [TBL] [Abstract][Full Text] [Related]
6. Efficient low-cost chromatin profiling with CUT&Tag. Kaya-Okur HS; Janssens DH; Henikoff JG; Ahmad K; Henikoff S Nat Protoc; 2020 Oct; 15(10):3264-3283. PubMed ID: 32913232 [TBL] [Abstract][Full Text] [Related]
7. Epigenomic Profiling of B Cell Subsets by CUT&Tag. Akdogan-Ozdilek B; George-Alexander LMM; Scharer CD Methods Mol Biol; 2024; 2826():65-77. PubMed ID: 39017886 [TBL] [Abstract][Full Text] [Related]
8. Efficient chromatin profiling of H3K4me3 modification in cotton using CUT&Tag. Tao X; Feng S; Zhao T; Guan X Plant Methods; 2020; 16():120. PubMed ID: 32884577 [TBL] [Abstract][Full Text] [Related]
9. Preparation of optimized concanavalin A-conjugated Dynabeads® magnetic beads for CUT&Tag. Fujiwara Y; Tanno Y; Sugishita H; Kishi Y; Makino Y; Okada Y PLoS One; 2021; 16(11):e0259846. PubMed ID: 34784358 [TBL] [Abstract][Full Text] [Related]
10. In situ tools for chromatin structural epigenomics. Henikoff S; Ahmad K Protein Sci; 2022 Nov; 31(11):e4458. PubMed ID: 36170035 [TBL] [Abstract][Full Text] [Related]
11. Analyzing the Genome-Wide Distribution of Histone Marks by CUT&Tag in Drosophila Embryos. Zenk F; Cardamone F; Ibarra Morales DA; Atinbayeva N; Zhan Y; Iovino N Methods Mol Biol; 2023; 2655():1-17. PubMed ID: 37212984 [TBL] [Abstract][Full Text] [Related]
12. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964 [TBL] [Abstract][Full Text] [Related]
13. CUT&Tag for Efficient Epigenomic Profiling of Frozen Tissues. Yin Q; Li Y; Yin Y Methods Mol Biol; 2024; 2846():181-189. PubMed ID: 39141237 [TBL] [Abstract][Full Text] [Related]
14. Cut&tag: a powerful epigenetic tool for chromatin profiling. Fu Z; Jiang S; Sun Y; Zheng S; Zong L; Li P Epigenetics; 2024 Dec; 19(1):2293411. PubMed ID: 38105608 [TBL] [Abstract][Full Text] [Related]
15. An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant. Ranawaka B; Tanurdzic M; Waterhouse P; Naim F Mol Biol Rep; 2020 Dec; 47(12):9499-9509. PubMed ID: 33237398 [TBL] [Abstract][Full Text] [Related]
16. Profiling RNA at chromatin targets in situ by antibody-targeted tagmentation. Khyzha N; Henikoff S; Ahmad K Nat Methods; 2022 Nov; 19(11):1383-1392. PubMed ID: 36192462 [TBL] [Abstract][Full Text] [Related]
17. CUT&Tag for Mapping In Vivo Protein-DNA Interactions in Plants. Ouyang W; Li X Methods Mol Biol; 2023; 2698():109-117. PubMed ID: 37682472 [TBL] [Abstract][Full Text] [Related]
18. Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue. Farzad N; Enninful A; Bao S; Zhang D; Deng Y; Fan R Nat Protoc; 2024 Nov; 19(11):3389-3425. PubMed ID: 38943021 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide analysis of histone modifications can contribute to the identification of candidate cis-regulatory regions in the threespine stickleback fish. Okude G; Yamasaki YY; Toyoda A; Mori S; Kitano J BMC Genomics; 2024 Jul; 25(1):685. PubMed ID: 38992624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]