BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 3553240)

  • 1. Hypokalemic nephropathy in the rat. Role of ammonia in chronic tubular injury.
    Tolins JP; Hostetter MK; Hostetter TH
    J Clin Invest; 1987 May; 79(5):1447-58. PubMed ID: 3553240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3.
    Nath KA; Hostetter MK; Hostetter TH
    J Clin Invest; 1985 Aug; 76(2):667-75. PubMed ID: 2993363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of growth factors and ammonia in the genesis of hypokalemic nephropathy.
    Fervenza FC; Rabkin R
    J Ren Nutr; 2002 Jul; 12(3):151-9. PubMed ID: 12105812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity.
    Suga SI; Phillips MI; Ray PE; Raleigh JA; Vio CP; Kim YG; Mazzali M; Gordon KL; Hughes J; Johnson RJ
    Am J Physiol Renal Physiol; 2001 Oct; 281(4):F620-9. PubMed ID: 11553508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypokalemic nephropathy is associated with impaired angiogenesis.
    Reungjui S; Roncal CA; Sato W; Glushakova OY; Croker BP; Suga S; Ouyang X; Tungsanga K; Nakagawa T; Johnson RJ; Mu W
    J Am Soc Nephrol; 2008 Jan; 19(1):125-34. PubMed ID: 18178802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency.
    Suga S; Mazzali M; Ray PE; Kang DH; Johnson RJ
    Kidney Int; 2002 Mar; 61(3):951-8. PubMed ID: 11849449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of potassium on renal NH3 production.
    Sastrasinh S; Tannen RL
    Am J Physiol; 1983 Apr; 244(4):F383-91. PubMed ID: 6837736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy.
    Lenderink AM; Liegel K; Ljubanović D; Coleman KE; Gilkeson GS; Holers VM; Thurman JM
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F555-64. PubMed ID: 17522263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic identification of alterations in metabolic enzymes and signaling proteins in hypokalemic nephropathy.
    Thongboonkerd V; Chutipongtanate S; Kanlaya R; Songtawee N; Sinchaikul S; Parichatikanond P; Chen ST; Malasit P
    Proteomics; 2006 Apr; 6(7):2273-85. PubMed ID: 16502468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of phosphate-dependent glutaminase activity to ammonia excretion in potassium deficiency and acidosis.
    Fraley DS; Adler S; Rankin B; Curthoys N; Zett B
    Miner Electrolyte Metab; 1985; 11(3):140-9. PubMed ID: 4010646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of insulin-like growth factor-I and transforming growth factor-beta in hypokalemic nephropathy in the rat.
    Tsao T; Fawcett J; Fervenza FC; Hsu FW; Huie P; Sibley RK; Rabkin R
    Kidney Int; 2001 Jan; 59(1):96-105. PubMed ID: 11135062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of potassium on renal ammonia production.
    Tannen RL; McGill J
    Am J Physiol; 1976 Oct; 231(4):1178-84. PubMed ID: 984204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ammonia in tubulointerstitial injury.
    Clark EC; Nath KA; Hostetter MK; Hostetter TH
    Miner Electrolyte Metab; 1990; 16(5):315-21. PubMed ID: 2283994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis.
    Rangan GK; Pippin JW; Couser WG
    Kidney Int; 2004 Nov; 66(5):1838-48. PubMed ID: 15496154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants.
    Nath KA; Salahudeen AK
    J Clin Invest; 1990 Oct; 86(4):1179-92. PubMed ID: 2212007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin E ameliorates renal injury in an experimental model of immunoglobulin A nephropathy.
    Trachtman H; Chan JC; Chan W; Valderrama E; Brandt R; Wakely P; Futterweit S; Maesaka J; Ma C
    Pediatr Res; 1996 Oct; 40(4):620-6. PubMed ID: 8888293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of volume expansion on renal citrate and ammonia metabolism in KCl-deficient rats.
    Adler S; Zett B; Anderson B; Fraley DS
    J Clin Invest; 1975 Aug; 56(2):391-400. PubMed ID: 239022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats.
    Toback FG; Ordónez NG; Bortz SL; Spargo BH
    Lab Invest; 1976 Feb; 34(2):115-24. PubMed ID: 175213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats.
    Rangan GK; Wang Y; Tay YC; Harris DC
    Kidney Int; 1999 Jul; 56(1):118-34. PubMed ID: 10411685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ammoniagenesis as a determinant of progressive renal injury.
    Nath KA; Hostetter MK; Hostetter TH
    Am J Kidney Dis; 1991 Jun; 17(6):654-7. PubMed ID: 2042643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.