These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 3553240)

  • 21. Symptoms and course of chronic hypokalemic nephropathy in man.
    Cremer W; Bock KD
    Clin Nephrol; 1977 Mar; 7(3):112-9. PubMed ID: 870267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased ammoniagenesis and the renal tubular effects of potassium depletion.
    O'Reilly DS
    J Clin Pathol; 1984 Dec; 37(12):1358-62. PubMed ID: 6511981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation.
    Abu Hossain S; Chaudhry FA; Zahedi K; Siddiqui F; Amlal H
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F969-78. PubMed ID: 21795646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of potassium deficiency and gossypol on urinary N-acetyl-beta-glucosaminidase excretion in the rat.
    Wu D; Reidenberg MM
    Contraception; 1993 Nov; 48(5):513-6. PubMed ID: 8275698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic potassium depletion induces renal injury, salt sensitivity, and hypertension in young rats.
    Ray PE; Suga S; Liu XH; Huang X; Johnson RJ
    Kidney Int; 2001 May; 59(5):1850-8. PubMed ID: 11318956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular granules of the renal medulla in a case of potassium depletion due to renal potassium wasting. Electron microscopic comparison with renal medullary granules in the potassium-depleted rat.
    France R; Gray ME; Stone WJ; Swift LL
    Am J Pathol; 1978 May; 91(2):299-312. PubMed ID: 565595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reductions in renal mass and the nephropathy induced by mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):366-79. PubMed ID: 9144453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of apoptosis in the development of renal cortical tubular atrophy associated with healed experimental renal papillary necrosis.
    Gobé GC; Axelsen RA
    Pathology; 1991 Jul; 23(3):213-23. PubMed ID: 1780187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. L-Arginine treatment may prevent tubulointerstitial nephropathy caused by germanium dioxide.
    Yanagisawa H; Yamazaki N; Sato G; Wada O
    Kidney Int; 2000 Jun; 57(6):2275-84. PubMed ID: 10844598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of intracellular pH in suspensions of renal tubules from potassium-depleted rats.
    Schoolwerth AC; Culpepper RM
    Miner Electrolyte Metab; 1990; 16(4):191-6. PubMed ID: 2277602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats.
    Reddi AS; Bollineni JS
    Kidney Int; 2001 Apr; 59(4):1342-53. PubMed ID: 11260395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposite role of CD44-standard and CD44-variant-3 in tubular injury and development of renal fibrosis during chronic obstructive nephropathy.
    Rampanelli E; Rouschop KM; Claessen N; Teske GJ; Pals ST; Leemans JC; Florquin S
    Kidney Int; 2014 Sep; 86(3):558-69. PubMed ID: 24717295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of aristolochic acid I and/or hypokalemia on tubular damage in C57BL/6 rat with aristolochic acid nephropathy.
    Yi JH; Han SW; Kim WY; Kim J; Park MH
    Korean J Intern Med; 2018 Jul; 33(4):763-773. PubMed ID: 28192889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Randomized controlled trial: lisinopril reduces proteinuria, ammonia, and renal polypeptide tubular catabolism in patients with chronic allograft nephropathy.
    Amara AB; Sharma A; Alexander JL; Alfirevic A; Mohiuddin A; Pirmohamed M; Close GL; Grime S; Maltby P; Shawki H; Heyworth S; Shenkin A; Smith L; Sharma AK; Hammad A; Rustom R
    Transplantation; 2010 Jan; 89(1):104-14. PubMed ID: 20061926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of polyclonal free light chain deposition to tubular injury.
    Parasuraman R; Wolforth SC; Wiesend WN; Dumler F; Rooney MT; Li W; Zhang PL
    Am J Nephrol; 2013; 38(6):465-74. PubMed ID: 24296691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation of renal cortical gluconeogenesis, glutamate content, and production of ammonia.
    Pagliara AS; Goodman AD
    J Clin Invest; 1970 Nov; 49(11):1967-74. PubMed ID: 4319966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lead, at low levels, accelerates arteriolopathy and tubulointerstitial injury in chronic kidney disease.
    Roncal C; Mu W; Reungjui S; Kim KM; Henderson GN; Ouyang X; Nakagawa T; Johnson RJ
    Am J Physiol Renal Physiol; 2007 Oct; 293(4):F1391-6. PubMed ID: 17715263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THE EFFECT OF POTASSIUM DEFICIENCY ON THE REABSORPTION OF PROTEIN IN THE RENAL TUBULE OF THE RAT.
    MORRISON AB; GARDNER KD
    J Exp Med; 1963 Oct; 118(4):479-88. PubMed ID: 14067900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria.
    Rangan GK; Pippin JW; Coombes JD; Couser WG
    Kidney Int; 2005 Feb; 67(2):492-503. PubMed ID: 15673297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy.
    Mizuno S; Matsumoto K; Nakamura T
    Kidney Int; 2001 Apr; 59(4):1304-14. PubMed ID: 11260391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.