BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35532591)

  • 1. Comparing the chondrogenic potential of rabbit mesenchymal stem cells derived from the infrapatellar fat pad, periosteum & bone marrow.
    Rajagopal K; Madhuri V
    Indian J Med Res; 2021 May; 154(5):732-742. PubMed ID: 35532591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine.
    Hindle P; Khan N; Biant L; Péault B
    Stem Cells Transl Med; 2017 Jan; 6(1):77-87. PubMed ID: 28170170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid.
    Neybecker P; Henrionnet C; Pape E; Grossin L; Mainard D; Galois L; Loeuille D; Gillet P; Pinzano A
    Stem Cell Res Ther; 2020 Jul; 11(1):316. PubMed ID: 32711576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model.
    Fu WL; Zhou CY; Yu JK
    Am J Sports Med; 2014 Mar; 42(3):592-601. PubMed ID: 24327479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infra-patellar fat pad-derived mesenchymal stem cells maintain their chondrogenic differentiation potential after arthroscopic harvest with blood-product supplementation.
    Neubauer M; Otahal A; Kuten O; Sherman SL; Moser L; Kramer K; DeLuna A; Neugebauer J; Dammerer D; Muellner T; Nehrer S
    Int Orthop; 2024 Jan; 48(1):279-290. PubMed ID: 37646823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment.
    Lopa S; Colombini A; Stanco D; de Girolamo L; Sansone V; Moretti M
    Eur Cell Mater; 2014 Apr; 27():298-311. PubMed ID: 24760577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow.
    Sasaki A; Mizuno M; Ozeki N; Katano H; Otabe K; Tsuji K; Koga H; Mochizuki M; Sekiya I
    PLoS One; 2018; 13(8):e0202922. PubMed ID: 30138399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells.
    Bagge J; Berg LC; Janes J; MacLeod JN
    BMC Vet Res; 2022 Nov; 18(1):388. PubMed ID: 36329434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit.
    Koga H; Muneta T; Nagase T; Nimura A; Ju YJ; Mochizuki T; Sekiya I
    Cell Tissue Res; 2008 Aug; 333(2):207-15. PubMed ID: 18560897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering.
    Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P
    Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Chondrogenic Differentiation Potential of Equine Synovial Membrane-Derived and Bone Marrow-Derived Mesenchymal Stem Cells.
    Gale AL; Linardi RL; McClung G; Mammone RM; Ortved KF
    Front Vet Sci; 2019; 6():178. PubMed ID: 31245393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.
    Reich CM; Raabe O; Wenisch S; Bridger PS; Kramer M; Arnhold S
    Vet Res Commun; 2012 Jun; 36(2):139-48. PubMed ID: 22392598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic and functional properties of dedifferentiated fat cells derived from infrapatellar fat pad.
    Tanimoto K; Matsumoto T; Nagaoka Y; Kazama T; Yamamoto C; Kano K; Nagaoka M; Saito S; Tokuhashi Y; Nakanishi K
    Regen Ther; 2022 Mar; 19():35-46. PubMed ID: 35059478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells.
    Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM
    Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Platelet-Rich Plasma on Chondrogenic Differentiation of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells.
    Liou JJ; Rothrauff BB; Alexander PG; Tuan RS
    Tissue Eng Part A; 2018 Oct; 24(19-20):1432-1443. PubMed ID: 30036140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells.
    Gale AL; Mammone RM; Dodson ME; Linardi RL; Ortved KF
    BMC Vet Res; 2019 Jun; 15(1):201. PubMed ID: 31200719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proliferative and chondrogenic potential of mesenchymal stromal cells from pluripotent and bone marrow cells.
    Sfougataki I; Varela I; Stefanaki K; Karagiannidou A; Roubelakis MG; Kalodimou V; Papathanasiou I; Traeger-Synodinos J; Kitsiou-Tzeli S; Kanavakis E; Kitra V; Tsezou A; Tzetis M; Goussetis E
    Histol Histopathol; 2020 Dec; 35(12):1415-1426. PubMed ID: 32959885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells in a three-dimensional environment.
    Salonius E; Kontturi L; Laitinen A; Haaparanta AM; Korhonen M; Nystedt J; Kiviranta I; Muhonen V
    J Cell Physiol; 2020 Apr; 235(4):3497-3507. PubMed ID: 31552691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Converse modulation of Wnt/β-catenin signaling during expansion and differentiation phases of Infrapatellar fat pad-derived MSCs for improved engineering of hyaline cartilage.
    Mahajan A; Nengroo MA; Datta D; Katti DS
    Biomaterials; 2023 Nov; 302():122296. PubMed ID: 37696204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells.
    Lettry V; Hosoya K; Takagi S; Okumura M
    Jpn J Vet Res; 2010 May; 58(1):5-15. PubMed ID: 20645581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.