These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35532854)
1. Methodological approach to spatial analysis of agricultural pest dispersal in olive landscapes. Moreno A; Rescia AJ; Pascual S; Ortega M Environ Monit Assess; 2022 May; 194(6):411. PubMed ID: 35532854 [TBL] [Abstract][Full Text] [Related]
2. Land-Use Effect on Olive Groves Pest Alves JF; Mendes S; Alves da Silva A; Sousa JP; Paredes D Insects; 2021 Jan; 12(1):. PubMed ID: 33435550 [TBL] [Abstract][Full Text] [Related]
3. Do non-crop areas and landscape structure influence dispersal and population densities of male olive moth? Villa M; Santos SAP; Pascual S; Pereira JA Bull Entomol Res; 2021 Feb; 111(1):73-81. PubMed ID: 32515317 [TBL] [Abstract][Full Text] [Related]
4. Identifying an Optimal Screen Mesh to Enable Augmentorium-Based Enhanced Biological Control of the Olive Fruit Fly Bactrocera oleae (Diptera: Tephritidae) and the Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephritidae). Desurmont GA; Tannières M; Roche M; Blanchet A; Manoukis NC J Insect Sci; 2022 May; 22(3):. PubMed ID: 35640027 [TBL] [Abstract][Full Text] [Related]
5. Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Malheiro R; Casal S; Cunha SC; Baptista P; Pereira JA Phytochemistry; 2016 Jan; 121():11-9. PubMed ID: 26603276 [TBL] [Abstract][Full Text] [Related]
6. Olive Fruit Fly, Bactrocera oleae (Diptera: Tephritidae), Attraction to Volatile Compounds Produced by Host and Insect-Associated Yeast Strains. Vitanović E; Aldrich JR; Boundy-Mills K; Čagalj M; Ebeler SE; Burrack H; Zalom FG J Econ Entomol; 2020 Apr; 113(2):752-759. PubMed ID: 31879768 [TBL] [Abstract][Full Text] [Related]
7. Is ground cover vegetation an effective biological control enhancement strategy against olive pests? Paredes D; Cayuela L; Gurr GM; Campos M PLoS One; 2015; 10(2):e0117265. PubMed ID: 25646778 [TBL] [Abstract][Full Text] [Related]
8. Bacterial symbiosis in Bactrocera oleae, an Achilles' heel for its pest control. Bigiotti G; Sacchetti P; Pastorelli R; Lauzon CR; Belcari A Insect Sci; 2021 Aug; 28(4):874-884. PubMed ID: 32519794 [TBL] [Abstract][Full Text] [Related]
9. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Rejili M; Fernandes T; Dinis AM; Pereira JA; Baptista P; Santos SA; Lino-Neto T Bull Entomol Res; 2016 Oct; 106(5):695-9. PubMed ID: 27296773 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family. Augustinos AA; Stratikopoulos EE; Drosopoulou E; Kakani EG; Mavragani-Tsipidou P; Zacharopoulou A; Mathiopoulos KD BMC Genomics; 2008 Dec; 9():618. PubMed ID: 19099577 [TBL] [Abstract][Full Text] [Related]
11. Toxicity and physiological interruptions of a proteinaceous toxin from Metarhizium anisopliae against the olive fruit pest, Bacterocera oleae (Diptera: Tephritidae). Juibari MM; Zibaee A; Mozhdehi MRA Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109681. PubMed ID: 37328131 [TBL] [Abstract][Full Text] [Related]
12. Olive cultivar and maturation process on the oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Malheiro R; Casal S; Pinheiro L; Baptista P; Pereira JA Bull Entomol Res; 2019 Feb; 109(1):43-53. PubMed ID: 29463321 [TBL] [Abstract][Full Text] [Related]
13. Feeding preferences and functional responses of Calathus granatensis and Pterostichus globosus (Coleoptera: Carabidae) on pupae of Bactrocera oleae (Diptera: Tephritidae). Dinis AM; Pereira JA; Benhadi-Marín J; Santos SA Bull Entomol Res; 2016 Dec; 106(6):701-709. PubMed ID: 27063655 [TBL] [Abstract][Full Text] [Related]
14. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. Grasso F; Coppola M; Carbone F; Baldoni L; Alagna F; Perrotta G; Pérez-Pulido AJ; Garonna A; Facella P; Daddiego L; Lopez L; Vitiello A; Rao R; Corrado G PLoS One; 2017; 12(8):e0183050. PubMed ID: 28797083 [TBL] [Abstract][Full Text] [Related]
15. Identification of fungi in Tunisian olive orchards: characterization and biological control potential. Gharsallah H; Ksentini I; Naayma S; Hadj Taieb K; Abdelhedi N; Schuster C; Triki MA; Ksantini M; Leclerque A BMC Microbiol; 2020 Oct; 20(1):307. PubMed ID: 33046014 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the effect of agroclimatic variables on the probability and timing of olive fruit fly attack. Rondoni G; Mattioli E; Giannuzzi VA; Chierici E; Betti A; Natale G; Petacchi R; Famiani F; Natale A; Conti E Front Plant Sci; 2024; 15():1401669. PubMed ID: 39077508 [TBL] [Abstract][Full Text] [Related]
17. Olive fruit fly: managing an ancient pest in modern times. Daane KM; Johnson MW Annu Rev Entomol; 2010; 55():151-69. PubMed ID: 19961328 [TBL] [Abstract][Full Text] [Related]
18. Parasitic wasps related to Alissandrakis E; Psirofonia P; Kavallieratos NG; Stanković SS; Žikić V Zookeys; 2018; (773):143-154. PubMed ID: 30026664 [TBL] [Abstract][Full Text] [Related]
19. Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Marchi S; Guidotti D; Ricciolini M; Petacchi R Int J Biometeorol; 2016 Nov; 60(11):1681-1694. PubMed ID: 27044274 [TBL] [Abstract][Full Text] [Related]
20. Role of Fruit Epicuticular Waxes in Preventing Rebora M; Salerno G; Piersanti S; Gorb E; Gorb S Insects; 2020 Mar; 11(3):. PubMed ID: 32192070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]