BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35533204)

  • 1. Mice lacking the mitochondrial exonuclease MGME1 develop inflammatory kidney disease with glomerular dysfunction.
    Milenkovic D; Sanz-Moreno A; Calzada-Wack J; Rathkolb B; Veronica Amarie O; Gerlini R; Aguilar-Pimentel A; Misic J; Simard ML; Wolf E; Fuchs H; Gailus-Durner V; de Angelis MH; Larsson NG
    PLoS Genet; 2022 May; 18(5):e1010190. PubMed ID: 35533204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria.
    Matic S; Jiang M; Nicholls TJ; Uhler JP; Dirksen-Schwanenland C; Polosa PL; Simard ML; Li X; Atanassov I; Rackham O; Filipovska A; Stewart JB; Falkenberg M; Larsson NG; Milenkovic D
    Nat Commun; 2018 Mar; 9(1):1202. PubMed ID: 29572490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease.
    Nicholls TJ; Zsurka G; Peeva V; Schöler S; Szczesny RJ; Cysewski D; Reyes A; Kornblum C; Sciacco M; Moggio M; Dziembowski A; Kunz WS; Minczuk M
    Hum Mol Genet; 2014 Dec; 23(23):6147-62. PubMed ID: 24986917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of both MGME1 and POLG EXO abolishes mtDNA whereas absence of either creates unique mtDNA duplications.
    Gonzalez CD; Nissanka N; Van Booven D; Griswold AJ; Moraes CT
    J Biol Chem; 2024 Apr; 300(4):107128. PubMed ID: 38432635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 5'-phosphate enhances the DNA-binding and exonuclease activities of human mitochondrial genome maintenance exonuclease 1 (MGME1).
    Urrutia KM; Xu W; Zhao L
    J Biol Chem; 2022 Sep; 298(9):102306. PubMed ID: 35934053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease.
    Kornblum C; Nicholls TJ; Haack TB; Schöler S; Peeva V; Danhauser K; Hallmann K; Zsurka G; Rorbach J; Iuso A; Wieland T; Sciacco M; Ronchi D; Comi GP; Moggio M; Quinzii CM; DiMauro S; Calvo SE; Mootha VK; Klopstock T; Strom TM; Meitinger T; Minczuk M; Kunz WS; Prokisch H
    Nat Genet; 2013 Feb; 45(2):214-9. PubMed ID: 23313956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA maintenance defects.
    El-Hattab AW; Craigen WJ; Scaglia F
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1539-1555. PubMed ID: 28215579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of the other genome-mitochondrial DNA depletion syndromes in humans.
    Elpeleg O; Mandel H; Saada A
    J Mol Med (Berl); 2002 Jul; 80(7):389-96. PubMed ID: 12110944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication.
    Uhler JP; Thörn C; Nicholls TJ; Matic S; Milenkovic D; Gustafsson CM; Falkenberg M
    Nucleic Acids Res; 2016 Jul; 44(12):5861-71. PubMed ID: 27220468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response.
    Zhao L
    Enzymes; 2019; 45():311-341. PubMed ID: 31627882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human mitochondrial DNA replication machinery and disease.
    Young MJ; Copeland WC
    Curr Opin Genet Dev; 2016 Jun; 38():52-62. PubMed ID: 27065468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions.
    Nissanka N; Bacman SR; Plastini MJ; Moraes CT
    Nat Commun; 2018 Jun; 9(1):2491. PubMed ID: 29950568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homozygous c.359del variant in MGME1 is associated with early onset cerebellar ataxia.
    Hebbar M; Girisha KM; Srivastava A; Bielas S; Shukla A
    Eur J Med Genet; 2017 Oct; 60(10):533-535. PubMed ID: 28711739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial DNA mutations and depletion in pediatric medicine.
    Spinazzola A
    Semin Fetal Neonatal Med; 2011 Aug; 16(4):190-6. PubMed ID: 21652274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders.
    Cohen BH; Naviaux RK
    Methods; 2010 Aug; 51(4):364-73. PubMed ID: 20558295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial DNA replication: clinical syndromes.
    Almannai M; El-Hattab AW; Scaglia F
    Essays Biochem; 2018 Jul; 62(3):297-308. PubMed ID: 29950321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication fork rescue in mammalian mitochondria.
    Torregrosa-Muñumer R; Hangas A; Goffart S; Blei D; Zsurka G; Griffith J; Kunz WS; Pohjoismäki JLO
    Sci Rep; 2019 Jun; 9(1):8785. PubMed ID: 31217442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA maintenance defects: potential therapeutic strategies.
    Almannai M; El-Hattab AW; Azamian MS; Ali M; Scaglia F
    Mol Genet Metab; 2022; 137(1-2):40-48. PubMed ID: 35914366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery.
    Peeva V; Blei D; Trombly G; Corsi S; Szukszto MJ; Rebelo-Guiomar P; Gammage PA; Kudin AP; Becker C; Altmüller J; Minczuk M; Zsurka G; Kunz WS
    Nat Commun; 2018 Apr; 9(1):1727. PubMed ID: 29712893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse models of mtDNA replication diseases.
    Tyynismaa H; Suomalainen A
    Methods; 2010 Aug; 51(4):405-10. PubMed ID: 20385238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.