These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35533204)

  • 41. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion.
    Bourdon A; Minai L; Serre V; Jais JP; Sarzi E; Aubert S; Chrétien D; de Lonlay P; Paquis-Flucklinger V; Arakawa H; Nakamura Y; Munnich A; Rötig A
    Nat Genet; 2007 Jun; 39(6):776-80. PubMed ID: 17486094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.
    Stumpf JD; Copeland WC
    PLoS Genet; 2014 Oct; 10(10):e1004748. PubMed ID: 25340760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How mitochondrial damage affects cell function.
    James AM; Murphy MP
    J Biomed Sci; 2002; 9(6 Pt 1):475-87. PubMed ID: 12372986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defects of mitochondrial DNA replication.
    Copeland WC
    J Child Neurol; 2014 Sep; 29(9):1216-24. PubMed ID: 24985751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication.
    Milenkovic D; Matic S; Kühl I; Ruzzenente B; Freyer C; Jemt E; Park CB; Falkenberg M; Larsson NG
    Hum Mol Genet; 2013 May; 22(10):1983-93. PubMed ID: 23393161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Mitochondrial disease and mitochondrial DNA depletion syndromes].
    Huang CC; Hsu CH
    Acta Neurol Taiwan; 2009 Dec; 18(4):287-95. PubMed ID: 20329599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Animal models for mitochondrial disease.
    Wallace DC
    Methods Mol Biol; 2002; 197():3-54. PubMed ID: 12013805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PNPase knockout results in mtDNA loss and an altered metabolic gene expression program.
    Shimada E; Ahsan FM; Nili M; Huang D; Atamdede S; TeSlaa T; Case D; Yu X; Gregory BD; Perrin BJ; Koehler CM; Teitell MA
    PLoS One; 2018; 13(7):e0200925. PubMed ID: 30024931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inherited peripheral neuropathies due to mitochondrial disorders.
    Cassereau J; Codron P; Funalot B
    Rev Neurol (Paris); 2014 May; 170(5):366-74. PubMed ID: 24768438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance.
    Manini A; Abati E; Comi GP; Corti S; Ronchi D
    Ageing Res Rev; 2022 Apr; 76():101578. PubMed ID: 35114397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.
    Blázquez-Bermejo C; Carreño-Gago L; Molina-Granada D; Aguirre J; Ramón J; Torres-Torronteras J; Cabrera-Pérez R; Martín MÁ; Domínguez-González C; de la Cruz X; Lombès A; García-Arumí E; Martí R; Cámara Y
    FASEB J; 2019 Jun; 33(6):7168-7179. PubMed ID: 30848931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue specific differences in mitochondrial DNA maintenance and expression.
    Herbers E; Kekäläinen NJ; Hangas A; Pohjoismäki JL; Goffart S
    Mitochondrion; 2019 Jan; 44():85-92. PubMed ID: 29339192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 54. Age-associated mosaic respiratory chain deficiency causes trans-neuronal degeneration.
    Dufour E; Terzioglu M; Sterky FH; Sörensen L; Galter D; Olson L; Wilbertz J; Larsson NG
    Hum Mol Genet; 2008 May; 17(10):1418-26. PubMed ID: 18245781
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allotopic Expression of ATP6 in Mouse as a Transgenic Model of Mitochondrial Disease.
    Dunn DA; Pinkert CA
    Methods Mol Biol; 2021; 2277():1-13. PubMed ID: 34080141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Primer removal during mammalian mitochondrial DNA replication.
    Uhler JP; Falkenberg M
    DNA Repair (Amst); 2015 Oct; 34():28-38. PubMed ID: 26303841
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy.
    Ignatenko O; Chilov D; Paetau I; de Miguel E; Jackson CB; Capin G; Paetau A; Terzioglu M; Euro L; Suomalainen A
    Nat Commun; 2018 Jan; 9(1):70. PubMed ID: 29302033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diseases caused by nuclear genes affecting mtDNA stability.
    Suomalainen A; Kaukonen J
    Am J Med Genet; 2001; 106(1):53-61. PubMed ID: 11579425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease.
    Ishikawa K; Nakada K
    Biochim Biophys Acta Gen Subj; 2021 Mar; 1865(3):129835. PubMed ID: 33358867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA.
    Kühl I; Miranda M; Posse V; Milenkovic D; Mourier A; Siira SJ; Bonekamp NA; Neumann U; Filipovska A; Polosa PL; Gustafsson CM; Larsson NG
    Sci Adv; 2016 Aug; 2(8):e1600963. PubMed ID: 27532055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.