BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35533677)

  • 1. Deep learning for improving the spatial resolution of magnetic particle imaging.
    Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677
    [No Abstract]   [Full Text] [Related]  

  • 2. Anisotropic edge-preserving network for resolution enhancement in unidirectional Cartesian magnetic particle imaging.
    Shang Y; Liu J; Liu Y; Zhang B; Wu X; Zhang L; Tong W; Hui H; Tian J
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36689774
    [No Abstract]   [Full Text] [Related]  

  • 3. Self-supervised Signal Denoising for Magnetic Particle Imaging.
    Peng H; Li Y; Yang X; Tian J; Hui H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging.
    Pantke D; Mueller F; Reinartz S; Philipps J; Mohammadali Dadfar S; Peters M; Franke J; Schrank F; Kiessling F; Schulz V
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35472698
    [No Abstract]   [Full Text] [Related]  

  • 5. Weighted sum of harmonic signals for direct imaging in magnetic particle imaging.
    Liu Y; Hui H; Liu S; Li G; Zhang B; Zhong J; An Y; Tian J
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36573436
    [No Abstract]   [Full Text] [Related]  

  • 6. Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging.
    Wen J; An Y; Shao L; Yin L; Peng Z; Liu Y; Tian J; Du Y
    Comput Biol Med; 2024 Jun; 178():108783. PubMed ID: 38909446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.
    Vaalma S; Rahmer J; Panagiotopoulos N; Duschka RL; Borgert J; Barkhausen J; Vogt FM; Haegele J
    PLoS One; 2017; 12(1):e0168902. PubMed ID: 28056102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
    Du Y; Lai PT; Leung CH; Pong PW
    Int J Mol Sci; 2013 Sep; 14(9):18682-710. PubMed ID: 24030719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.
    Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H
    Med Phys; 2024 May; ():. PubMed ID: 38700948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Quantitative Analysis Method for Magnetic Particle Imaging Based on Deblurring and Region Scalable Fitting.
    Wang L; Huang Y; Zhao Y; Tian J; Zhang L; Du Y
    Mol Imaging Biol; 2023 Aug; 25(4):788-797. PubMed ID: 36973569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.
    Murase K
    Med Phys; 2020 Apr; 47(4):1845-1859. PubMed ID: 32003025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System matrix recovery based on deep image prior in magnetic particle imaging.
    Yin L; Guo H; Zhang P; Li Y; Hui H; Du Y; Tian J
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36584394
    [No Abstract]   [Full Text] [Related]  

  • 13. A systematic 3-D magnetic particle imaging simulation model for quantitative analysis of reconstruction image quality.
    Shen Y; Zhang L; Hui H; Guo L; Wang T; Yang G; Tian J
    Comput Methods Programs Biomed; 2024 Jul; 252():108250. PubMed ID: 38815547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic separation of iron oxide nanoparticles to improve their application for magnetic particle imaging.
    Arsalani S; Löwa N; Kosch O; Radon P; Baffa O; Wiekhorst F
    Phys Med Biol; 2021 Jan; 66(1):015002. PubMed ID: 33227720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic particle imaging: current developments and future directions.
    Panagiotopoulos N; Duschka RL; Ahlborg M; Bringout G; Debbeler C; Graeser M; Kaethner C; Lüdtke-Buzug K; Medimagh H; Stelzner J; Buzug TM; Barkhausen J; Vogt FM; Haegele J
    Int J Nanomedicine; 2015; 10():3097-114. PubMed ID: 25960650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.
    Graeser M; Knopp T; Szwargulski P; Friedrich T; von Gladiss A; Kaul M; Krishnan KM; Ittrich H; Adam G; Buzug TM
    Sci Rep; 2017 Jul; 7(1):6872. PubMed ID: 28761103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.
    Bente K; Weber M; Graeser M; Sattel TF; Erbe M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):644-51. PubMed ID: 25350924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Jiles-Atherton Model for Dynamic Magnetization in X-Space Magnetic Particle Imaging.
    Li Y; Hui H; Zhang P; Zhong J; Yin L; Zhang H; Zhang B; An Y; Tian J
    IEEE Trans Biomed Eng; 2023 Jul; 70(7):2035-2045. PubMed ID: 37018247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DERnet: a deep neural network for end-to-end reconstruction in magnetic particle imaging.
    Peng Z; Yin L; Sun Z; Liang Q; Ma X; An Y; Tian J; Du Y
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38064750
    [No Abstract]   [Full Text] [Related]  

  • 20. Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging.
    Liu Y; Li G; Li J; Tang Z; An Y; Tian J
    IEEE Trans Biomed Eng; 2024 May; PP():. PubMed ID: 38739521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.