BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35533789)

  • 1. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy.
    Long Q; Zheng P; Zheng X; Li W; Hua L; Yang Z; Huang W; Ma Y
    Adv Drug Deliv Rev; 2022 Jul; 186():114321. PubMed ID: 35533789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial membrane vesicles for vaccine applications.
    Krishnan N; Kubiatowicz LJ; Holay M; Zhou J; Fang RH; Zhang L
    Adv Drug Deliv Rev; 2022 Jun; 185():114294. PubMed ID: 35436569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations for the Analysis of Bacterial Membrane Vesicles: Methods of Vesicle Production and Quantification Can Influence Biological and Experimental Outcomes.
    Bitto NJ; Zavan L; Johnston EL; Stinear TP; Hill AF; Kaparakis-Liaskos M
    Microbiol Spectr; 2021 Dec; 9(3):e0127321. PubMed ID: 34937167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods of Bacterial Membrane Vesicle Production, Purification, Quantification, and Examination of Their Immunogenic Functions.
    Bitto NJ; Kaparakis-Liaskos M
    Methods Mol Biol; 2022; 2523():43-61. PubMed ID: 35759190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer.
    Gao J; Su Y; Wang Z
    Adv Drug Deliv Rev; 2022 Jul; 186():114340. PubMed ID: 35569561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunomodulatory roles and novel applications of bacterial membrane vesicles.
    Gilmore WJ; Johnston EL; Zavan L; Bitto NJ; Kaparakis-Liaskos M
    Mol Immunol; 2021 Jun; 134():72-85. PubMed ID: 33725501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery.
    Uddin MJ; Dawan J; Jeon G; Yu T; He X; Ahn J
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32380740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and purification of bacterial membrane vesicles for biotechnology applications: Challenges and opportunities.
    Castillo-Romero KF; Santacruz A; González-Valdez J
    Electrophoresis; 2023 Jan; 44(1-2):107-124. PubMed ID: 36398478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial membrane vesicles as novel nanosystems for drug delivery.
    Jain S; Pillai J
    Int J Nanomedicine; 2017; 12():6329-6341. PubMed ID: 28919737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial membrane vesicle functions, laboratory methods, and applications.
    Aytar Çelik P; Derkuş B; Erdoğan K; Barut D; Blaise Manga E; Yıldırım Y; Pecha S; Çabuk A
    Biotechnol Adv; 2022; 54():107869. PubMed ID: 34793882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy.
    Aytar Çelik P; Erdogan-Gover K; Barut D; Enuh BM; Amasya G; Sengel-Türk CT; Derkus B; Çabuk A
    Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial membrane vesicles from
    Chiu CH; Lee YT; Lin YC; Kuo SC; Yang YS; Wang YC; Liu YH; Lin JC; Chang FY; Chen TL
    Virulence; 2020 Dec; 11(1):145-158. PubMed ID: 32043433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human B Cell Responses to Dominant and Subdominant Antigens Induced by a Meningococcal Outer Membrane Vesicle Vaccine in a Phase I Trial.
    Rollier CS; Dold C; Marsay L; Linder A; Green CA; Sadarangani M; Norheim G; Derrick JP; Feavers IM; Maiden MCJ; Pollard AJ
    mSphere; 2022 Feb; 7(1):e0067421. PubMed ID: 35080470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenesis Mediated by Bacterial Membrane Vesicles.
    Gilmore WJ; Bitto NJ; Kaparakis-Liaskos M
    Subcell Biochem; 2021; 97():101-150. PubMed ID: 33779916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering bacterial outer membrane vesicles as vaccine platform.
    Gerritzen MJH; Martens DE; Wijffels RH; van der Pol L; Stork M
    Biotechnol Adv; 2017 Sep; 35(5):565-574. PubMed ID: 28522212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Antigen Outer Membrane Vesicle Engineering to Develop Polyvalent Vaccines: The
    König E; Gagliardi A; Riedmiller I; Andretta C; Tomasi M; Irene C; Frattini L; Zanella I; Berti F; Grandi A; Caproni E; Fantappiè L; Grandi G
    Front Immunol; 2021; 12():752168. PubMed ID: 34819933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of Bacterial Extracellular Vesicles and Identification of Their Protein Cargo.
    Garcia RA; Aragoneses-Cazorla G; Lerma L; Prados-Rosales RC; Luque-Garcia JL
    Methods Mol Biol; 2023; 2652():285-292. PubMed ID: 37093483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy.
    Luo Z; Cheng X; Feng B; Fan D; Liu X; Xie R; Luo T; Wegner SV; Ma D; Chen F; Zeng W
    Adv Sci (Weinh); 2024 Jul; ():e2400049. PubMed ID: 38952055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research Progress on Bacterial Membrane Vesicles and Antibiotic Resistance.
    Liu X; Xiao J; Wang S; Zhou J; Qin J; Jia Z; Wang Y; Wang Z; Zhang Y; Hao H
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gram-negative outer membrane vesicles in vaccine development.
    Collins BS
    Discov Med; 2011 Jul; 12(62):7-15. PubMed ID: 21794204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.