These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35533888)

  • 21. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae.
    Sen A; Acosta-Sampson L; Alvaro CG; Ahn JS; Cate JH; Thorner J
    Appl Environ Microbiol; 2016 Dec; 82(24):7074-7085. PubMed ID: 27694235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PHB production from cellobiose with Saccharomyces cerevisiae.
    Ylinen A; de Ruijter JC; Jouhten P; Penttilä M
    Microb Cell Fact; 2022 Jun; 21(1):124. PubMed ID: 35729556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae.
    Shen Y; Hou J; Bao X
    Bioengineered; 2013; 4(6):435-7. PubMed ID: 23812433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neither 1G nor 2G fuel ethanol: setting the ground for a sugarcane-based biorefinery using an iSUCCELL yeast platform.
    Bermejo PM; Raghavendran V; Gombert AK
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32401320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing laboratory and industrial yeast platforms for the direct conversion of cellobiose into ethanol under simulated industrial conditions.
    Cagnin L; Favaro L; Gronchi N; Rose SH; Basaglia M; van Zyl WH; Casella S
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30776068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation.
    Ha SJ; Galazka JM; Kim SR; Choi JH; Yang X; Seo JH; Glass NL; Cate JH; Jin YS
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):504-9. PubMed ID: 21187422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of a Saccharomyces cerevisiae strain able to ferment cellobiose.
    Adam AC; Polaina J
    Curr Genet; 1991 Jul; 20(1-2):5-8. PubMed ID: 1934117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain.
    Huang S; Liu T; Peng B; Geng A
    Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol production by Saccharomyces cerevisiae using lignocellulosic hydrolysate from Chrysanthemum waste degradation.
    Quevedo-Hidalgo B; Monsalve-Marín F; Narváez-Rincón PC; Pedroza-Rodríguez AM; Velásquez-Lozano ME
    World J Microbiol Biotechnol; 2013 Mar; 29(3):459-66. PubMed ID: 23117675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains.
    Smekenov I; Bakhtambayeva M; Bissenbayev K; Saparbayev M; Taipakova S; Bissenbaev AK
    Braz J Microbiol; 2020 Mar; 51(1):107-123. PubMed ID: 31776864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in
    Chomvong K; Benjamin DI; Nomura DK; Cate JHD
    mBio; 2017 Aug; 8(4):. PubMed ID: 28790206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.
    Wickramasinghe GHIM; Rathnayake PPAMSI; Chandrasekharan NV; Weerasinghe MSS; Wijesundera RLC; Wijesundera WSS
    BMC Microbiol; 2017 Jun; 17(1):137. PubMed ID: 28637443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.
    Hughes SR; Cox EJ; Bang SS; Pinkelman RJ; López-Núñez JC; Saha BC; Qureshi N; Gibbons WR; Fry MR; Moser BR; Bischoff KM; Liu S; Sterner DE; Butt TR; Riedmuller SB; Jones MA; Riaño-Herrera NM
    J Lab Autom; 2015 Dec; 20(6):621-35. PubMed ID: 25720598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.