These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35534179)

  • 21. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling.
    Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting circRNA-Disease Associations Based on circRNA Expression Similarity and Functional Similarity.
    Wang Y; Nie C; Zang T; Wang Y
    Front Genet; 2019; 10():832. PubMed ID: 31572444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematical Identification of Breast Cancer-Related Circular RNA Modules for Deciphering circRNA Functions Based on the Non-Negative Matrix Factorization Algorithm.
    Wang S; Xia P; Zhang L; Yu L; Liu H; Meng Q; Liu S; Li J; Song Q; Wu J; Wang W; Yang L; Xiao Y; Xu C
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Matrix Factorization Improves Prediction of Human CircRNA-Disease Associations.
    Lu C; Zeng M; Zhang F; Wu FX; Li M; Wang J
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):891-899. PubMed ID: 32750925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations.
    Xiao Q; Yu H; Zhong J; Liang C; Li G; Ding P; Luo J
    Genomics; 2020 Sep; 112(5):3407-3415. PubMed ID: 32561349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CDA-SKAG: Predicting circRNA-disease associations using similarity kernel fusion and an attention-enhancing graph autoencoder.
    Wang H; Han J; Li H; Duan L; Liu Z; Cheng H
    Math Biosci Eng; 2023 Feb; 20(5):7957-7980. PubMed ID: 37161181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating Bipartite Network Projection and KATZ Measure to Identify Novel CircRNA-Disease Associations.
    Zhao Q; Yang Y; Ren G; Ge E; Fan C
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):578-584. PubMed ID: 31199265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification.
    Li G; Li Y; Liang C; Luo J
    Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations.
    Deng L; Zhang W; Shi Y; Tang Y
    Sci Rep; 2019 Jul; 9(1):9605. PubMed ID: 31270357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A survey of circular RNAs in complex diseases: databases, tools and computational methods.
    Xiao Q; Dai J; Luo J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34676391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances.
    Li Y; Hu XG; Wang L; Li PP; You ZH
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting circRNA-drug sensitivity associations via graph attention auto-encoder.
    Deng L; Liu Z; Qian Y; Zhang J
    BMC Bioinformatics; 2022 May; 23(1):160. PubMed ID: 35508967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation.
    Niu M; Wang C; Zhang Z; Zou Q
    BMC Biol; 2024 Jan; 22(1):24. PubMed ID: 38281919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks.
    Fan C; Lei X; Wu FX
    Int J Biol Sci; 2018; 14(14):1950-1959. PubMed ID: 30585259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.