These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 35534655)
1. Phenomic data-facilitated rust and senescence prediction in maize using machine learning algorithms. DeSalvio AJ; Adak A; Murray SC; Wilde SC; Isakeit T Sci Rep; 2022 May; 12(1):7571. PubMed ID: 35534655 [TBL] [Abstract][Full Text] [Related]
2. Cumulative temporal vegetation indices from unoccupied aerial systems allow maize (Zea mays L.) hybrid yield to be estimated across environments with fewer flights. Chatterjee S; Adak A; Wilde S; Nakasagga S; Murray SC PLoS One; 2023; 18(1):e0277804. PubMed ID: 36701283 [TBL] [Abstract][Full Text] [Related]
3. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. Adak A; DeSalvio AJ; Arik MA; Murray SC G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257 [TBL] [Abstract][Full Text] [Related]
4. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping. Nguyen C; Sagan V; Bhadra S; Moose S Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425 [TBL] [Abstract][Full Text] [Related]
5. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. Adak A; Kang M; Anderson SL; Murray SC; Jarquin D; Wong RKW; Katzfuß M J Exp Bot; 2023 Sep; 74(17):5307-5326. PubMed ID: 37279568 [TBL] [Abstract][Full Text] [Related]
6. Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. Adak A; Murray SC; Anderson SL G3 (Bethesda); 2023 Jan; 13(1):. PubMed ID: 36445027 [TBL] [Abstract][Full Text] [Related]
7. Unoccupied aerial systems discovered overlooked loci capturing the variation of entire growing period in maize. Adak A; Murray SC; Anderson SL; Popescu SC; Malambo L; Romay MC; de Leon N Plant Genome; 2021 Jul; 14(2):e20102. PubMed ID: 34009740 [TBL] [Abstract][Full Text] [Related]
8. Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. Jines MP; Balint-Kurti P; Robertson-Hoyt LA; Molnar T; Holland JB; Goodman MM Theor Appl Genet; 2007 Feb; 114(4):659-67. PubMed ID: 17177063 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal modeling of high-throughput multispectral aerial images improves agronomic trait genomic prediction in hybrid maize. Morales N; Anche MT; Kaczmar NS; Lepak N; Ni P; Romay MC; Santantonio N; Buckler ES; Gore MA; Mueller LA; Robbins KR Genetics; 2024 May; 227(1):. PubMed ID: 38469622 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Resistance Loci to Southern Rust Mapped in a Temperate Maize Diversity Panel. Sun G; Mural RV; Turkus JD; Schnable JC Phytopathology; 2022 Mar; 112(3):579-587. PubMed ID: 34282952 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the potential of phenomic selection within and among diverse breeding material of maize (Zea mays L.). Weiß TM; Zhu X; Leiser WL; Li D; Liu W; Schipprack W; Melchinger AE; Hahn V; Würschum T G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100379 [TBL] [Abstract][Full Text] [Related]
12. Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery. Li J; Veeranampalayam-Sivakumar AN; Bhatta M; Garst ND; Stoll H; Stephen Baenziger P; Belamkar V; Howard R; Ge Y; Shi Y Plant Methods; 2019; 15():123. PubMed ID: 31695728 [TBL] [Abstract][Full Text] [Related]
13. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559 [TBL] [Abstract][Full Text] [Related]
14. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods. Guo Y; Yin G; Sun H; Wang H; Chen S; Senthilnath J; Wang J; Fu Y Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32916808 [TBL] [Abstract][Full Text] [Related]
15. Recognition of Maize Phenology in Sentinel Images with Machine Learning. Murguia-Cozar A; Macedo-Cruz A; Fernandez-Reynoso DS; Salgado Transito JA Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009637 [TBL] [Abstract][Full Text] [Related]
16. Machine learning approaches for estimation of the fraction of absorbed photosynthetically active radiation and net photosynthesis rate of maize using multi-spectral sensor. Parida PK; Eagan S; Ramanujam K; Sengodan R; Uthandi S; Ettiyagounder P; Rajagounder R Heliyon; 2024 Jul; 10(13):e34117. PubMed ID: 39091949 [TBL] [Abstract][Full Text] [Related]
17. Discovery and Fine Mapping of Lu L; Xu Z; Sun S; Du Q; Zhu Z; Weng J; Duan C Plant Dis; 2020 Jul; 104(7):1918-1924. PubMed ID: 32396052 [TBL] [Abstract][Full Text] [Related]
18. Fine mapping of RppP25, a southern rust resistance gene in maize. Zhao P; Zhang G; Wu X; Li N; Shi D; Zhang D; Ji C; Xu M; Wang S J Integr Plant Biol; 2013 May; 55(5):462-72. PubMed ID: 23302046 [TBL] [Abstract][Full Text] [Related]
19. Combined linkage and association mapping reveal QTL for host plant resistance to common rust (Puccinia sorghi) in tropical maize. Zheng H; Chen J; Mu C; Makumbi D; Xu Y; Mahuku G BMC Plant Biol; 2018 Nov; 18(1):310. PubMed ID: 30497411 [TBL] [Abstract][Full Text] [Related]
20. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. de Oliveira Aparecido LE; de Souza Rolim G; da Silva Cabral De Moraes JR; Costa CTS; de Souza PS Int J Biometeorol; 2020 Apr; 64(4):671-688. PubMed ID: 31912306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]