BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35535459)

  • 1. Comparing gradient boosting machine and Bayesian threshold BLUP for genome-based prediction of categorical traits in wheat breeding.
    Montesinos-López OA; Gonzalez HN; Montesinos-López A; Daza-Torres M; Lillemo M; Montesinos-López JC; Crossa J
    Plant Genome; 2022 Sep; 15(3):e20214. PubMed ID: 35535459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding.
    Montesinos-López OA; Martín-Vallejo J; Crossa J; Gianola D; Hernández-Suárez CM; Montesinos-López A; Juliana P; Singh R
    G3 (Bethesda); 2019 Feb; 9(2):601-618. PubMed ID: 30593512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program.
    Sandhu K; Patil SS; Pumphrey M; Carter A
    Plant Genome; 2021 Nov; 14(3):e20119. PubMed ID: 34482627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction.
    Montesinos-López OA; Carter AH; Bernal-Sandoval DA; Cano-Paez B; Montesinos-López A; Crossa J
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library.
    Montesinos-López OA; Montesinos-López A; Cano-Paez B; Hernández-Suárez CM; Santana-Mancilla PC; Crossa J
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes.
    Guo J; Khan J; Pradhan S; Shahi D; Khan N; Avci M; Mcbreen J; Harrison S; Brown-Guedira G; Murphy JP; Johnson J; Mergoum M; Esten Mason R; Ibrahim AMH; Sutton R; Griffey C; Babar MA
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33126620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using an incomplete block design to allocate lines to environments improves sparse genome-based prediction in plant breeding.
    Montesinos-Lopez OA; Montesinos-Lopez A; Acosta R; Varshney RK; Bentley A; Crossa J
    Plant Genome; 2022 Mar; 15(1):e20194. PubMed ID: 35170851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach.
    Lozada DN; Carter AH
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32664601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic prediction of agronomic traits in wheat using different models and cross-validation designs.
    Haile TA; Walkowiak S; N'Diaye A; Clarke JM; Hucl PJ; Cuthbert RD; Knox RE; Pozniak CJ
    Theor Appl Genet; 2021 Jan; 134(1):381-398. PubMed ID: 33135095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
    Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-trait genome prediction of new environments with partial least squares.
    Montesinos-López OA; Montesinos-López A; Bernal Sandoval DA; Mosqueda-Gonzalez BA; Valenzo-Jiménez MA; Crossa J
    Front Genet; 2022; 13():966775. PubMed ID: 36134027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic-enabled prediction with classification algorithms.
    Ornella L; Pérez P; Tapia E; González-Camacho JM; Burgueño J; Zhang X; Singh S; Vicente FS; Bonnett D; Dreisigacker S; Singh R; Long N; Crossa J
    Heredity (Edinb); 2014 Jun; 112(6):616-26. PubMed ID: 24424163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes.
    Montesinos-López OA; Martín-Vallejo J; Crossa J; Gianola D; Hernández-Suárez CM; Montesinos-López A; Juliana P; Singh R
    G3 (Bethesda); 2019 May; 9(5):1545-1556. PubMed ID: 30858235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for Correlation Between Traits in Genomic Prediction.
    Montesinos-López OA; Montesinos-López A; Mosqueda-Gonzalez BA; Montesinos-López JC; Crossa J
    Methods Mol Biol; 2022; 2467():285-327. PubMed ID: 35451780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle.
    Jiménez-Montero JA; González-Recio O; Alenda R
    J Dairy Sci; 2013 Jan; 96(1):625-34. PubMed ID: 23102955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Prediction and Genome-Wide Association Studies of Flour Yield and Alveograph Quality Traits Using Advanced Winter Wheat Breeding Material.
    Kristensen PS; Jensen J; Andersen JR; Guzmán C; Orabi J; Jahoor A
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual network improves the prediction accuracy of genomic selection.
    Wu H; Gao B; Zhang R; Huang Z; Yin Z; Hu X; Yang CX; Du ZQ
    Anim Genet; 2024 Aug; 55(4):599-611. PubMed ID: 38746973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data.
    Kärkkäinen HP; Sillanpää MJ
    G3 (Bethesda); 2013 Sep; 3(9):1511-23. PubMed ID: 23821618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.