BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35535734)

  • 1. In vivo glia-to-neuron conversion: pitfalls and solutions.
    Wang LL; Zhang CL
    Dev Neurobiol; 2022 Jul; 82(5):367-374. PubMed ID: 35535734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo.
    Xie Y; Zhou J; Wang LL; Zhang CL; Chen B
    EBioMedicine; 2023 Apr; 90():104531. PubMed ID: 36947961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Potential of PTBP1 Inhibition, If Any, Is Not Attributed to Glia-to-Neuron Conversion.
    Wang LL; Zhang CL
    Annu Rev Neurosci; 2023 Jul; 46():1-15. PubMed ID: 36750409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical examination of Ptbp1-mediated glia-to-neuron conversion in the mouse retina.
    Xie Y; Zhou J; Chen B
    Cell Rep; 2022 Jun; 39(11):110960. PubMed ID: 35705044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming.
    Rao Y; Du S; Yang B; Wang Y; Li Y; Li R; Zhou T; Du X; He Y; Wang Y; Zhou X; Yuan TF; Mao Y; Peng B
    Neuron; 2021 Dec; 109(24):4094-4108.e5. PubMed ID: 34875233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo glial trans-differentiation for neuronal replacement and functional recovery in central nervous system.
    Qian C; Dong B; Wang XY; Zhou FQ
    FEBS J; 2021 Aug; 288(16):4773-4785. PubMed ID: 33351267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurod1 mediates the reprogramming of NG2 glial into neurons in vitro.
    Wei M; Feng D; Lu Z; Hu Z; Wu H; Lian Y; Li D; Yan Z; Li Y; Wang X; Zhang H
    Gene Expr Patterns; 2023 Mar; 47():119305. PubMed ID: 36682427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion.
    Chen YC; Ma NX; Pei ZF; Wu Z; Do-Monte FH; Keefe S; Yellin E; Chen MS; Yin JC; Lee G; Minier-Toribio A; Hu Y; Bai YT; Lee K; Quirk GJ; Chen G
    Mol Ther; 2020 Jan; 28(1):217-234. PubMed ID: 31551137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Lineage Reprogramming for Brain Repair: Breakthroughs and Challenges.
    Vignoles R; Lentini C; d'Orange M; Heinrich C
    Trends Mol Med; 2019 Oct; 25(10):897-914. PubMed ID: 31371156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprogramming cellular identity in vivo.
    Leaman S; Marichal N; Berninger B
    Development; 2022 Feb; 149(4):. PubMed ID: 35195260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential neuronal reprogramming induced by NeuroD1 from astrocytes in grey matter
    Liu MH; Li W; Zheng JJ; Xu YG; He Q; Chen G
    Neural Regen Res; 2020 Feb; 15(2):342-351. PubMed ID: 31552908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming Glial Cells into Functional Neurons for Neuro-regeneration: Challenges and Promise.
    Wang F; Cheng L; Zhang X
    Neurosci Bull; 2021 Nov; 37(11):1625-1636. PubMed ID: 34283396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain.
    Fu XD; Mobley WC
    Annu Rev Neurosci; 2023 Jul; 46():145-165. PubMed ID: 37428606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected BrdU inhibition on astrocyte-to-neuron conversion.
    Wang T; Liao JC; Wang X; Wang QS; Wan KY; Yang YY; He Q; Zhang JX; Chen G; Li W
    Neural Regen Res; 2022 Jul; 17(7):1526-1534. PubMed ID: 34916438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress on in situ cell transdifferentiation in central nervous system].
    Wang HT; Li YZ; Fu QR; Zhang MY; Li H
    Sheng Li Xue Bao; 2019 Aug; 71(4):597-603. PubMed ID: 31440757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting PTB for Glia-to-Neuron Reprogramming In Vitro and In Vivo for Therapeutic Development in Neurological Diseases.
    Contardo M; De Gioia R; Gagliardi D; Comi GP; Ottoboni L; Nizzardo M; Corti S
    Biomedicines; 2022 Feb; 10(2):. PubMed ID: 35203608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurogenic Niche Conversion Strategy Induces Migration and Functional Neuronal Differentiation of Neural Precursor Cells Following Brain Injury.
    Wang Z; Zheng Y; Zheng M; Zhong J; Ma F; Zhou B; Zhu J
    Stem Cells Dev; 2020 Feb; 29(4):235-248. PubMed ID: 31797735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior.
    Raiders S; Black EC; Bae A; MacFarlane S; Klein M; Shaham S; Singhvi A
    Elife; 2021 Mar; 10():. PubMed ID: 33759761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Reprogramming of Resident NG2 Glia into Neurons with Properties of Fast-Spiking Parvalbumin-Containing Interneurons.
    Pereira M; Birtele M; Shrigley S; Benitez JA; Hedlund E; Parmar M; Ottosson DR
    Stem Cell Reports; 2017 Sep; 9(3):742-751. PubMed ID: 28844658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy.
    Lentini C; d'Orange M; Marichal N; Trottmann MM; Vignoles R; Foucault L; Verrier C; Massera C; Raineteau O; Conzelmann KK; Rival-Gervier S; Depaulis A; Berninger B; Heinrich C
    Cell Stem Cell; 2021 Dec; 28(12):2104-2121.e10. PubMed ID: 34592167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.