These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 35535894)

  • 1. Modeling Alzheimer's disease: considerations for a better translational and replicable mouse model.
    Cho JD; Yang M; Santa-Maria I
    Neural Regen Res; 2022 Nov; 17(11):2448-2449. PubMed ID: 35535894
    [No Abstract]   [Full Text] [Related]  

  • 2. Translational potential of synaptic alterations in Alzheimer's disease patients and amyloid precursor protein knock-in mice.
    Medina-Vera D; Enache D; Tambaro S; Abuhashish E; Rosell-Valle C; Winblad B; Rodríguez de Fonseca F; Bereczki E; Nilsson P
    Brain Commun; 2023; 5(1):fcad001. PubMed ID: 36687391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer's disease.
    Veening-Griffioen DH; Ferreira GS; van Meer PJK; Boon WPC; Gispen-de Wied CC; Moors EHM; Schellekens H
    Eur J Pharmacol; 2019 Sep; 859():172524. PubMed ID: 31291566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines.
    Keene CD; Darvas M; Kraemer B; Liggitt D; Sigurdson C; Ladiges W
    Pathobiol Aging Age Relat Dis; 2016; 6():32397. PubMed ID: 27317189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: translational development and clinical promise.
    Irwin RW; Brinton RD
    Prog Neurobiol; 2014 Feb; 113():40-55. PubMed ID: 24044981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing voltage-dependent potassium channel Kv3.4 levels ameliorates synapse loss in a mouse model of Alzheimer's disease.
    Yeap J; Sathyaprakash C; Toombs J; Tulloch J; Scutariu C; Rose J; Burr K; Davies C; Colom-Cadena M; Chandran S; Large CH; Rowan MJM; Gunthorpe MJ; Spires-Jones TL
    Brain Neurosci Adv; 2022; 6():23982128221086464. PubMed ID: 35359460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression.
    Polhamus DG; Dolton MJ; Rogers JA; Honigberg L; Jin JY; Quartino A
    J Prev Alzheimers Dis; 2023; 10(2):212-222. PubMed ID: 36946448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint space-time Bayesian disease mapping via quantification of disease risk association.
    Baer DR; Lawson AB; Joseph JE
    Stat Methods Med Res; 2021 Jan; 30(1):35-61. PubMed ID: 33595403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-induced pluripotent stem cells as a model for studying sporadic Alzheimer's disease.
    Riemens RJM; Kenis G; van den Beucken T
    Neurobiol Learn Mem; 2020 Nov; 175():107318. PubMed ID: 32977028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model.
    Santos G; Díaz M; Torres NV
    Front Physiol; 2016; 7():90. PubMed ID: 27014089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role of mitosis in spontaneous late-onset Alzheimer's disease; from a Shugoshin 1 cohesinopathy mouse model.
    Rao CV; Farooqui M; Asch AS; Yamada HY
    Cell Cycle; 2018; 17(19-20):2321-2334. PubMed ID: 30231670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations.
    Bonda DJ; Lee HG; Camins A; Pallàs M; Casadesus G; Smith MA; Zhu X
    Lancet Neurol; 2011 Mar; 10(3):275-9. PubMed ID: 21349442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropathological and behavioral features of an APP/PS1/MAPT (6xTg) transgenic model of Alzheimer's disease.
    Tag SH; Kim B; Bae J; Chang KA; Im HI
    Mol Brain; 2022 Jun; 15(1):51. PubMed ID: 35676711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marked Mild Cognitive Deficits in Humanized Mouse Model of Alzheimer's-Type Tau Pathology.
    Cho JD; Kim YA; Rafikian EE; Yang M; Santa-Maria I
    Front Behav Neurosci; 2021; 15():634157. PubMed ID: 34093145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Observational Data as a Proxy Cohort for Comparison Purposes with Open-Label Study Results: An Example from Alzheimer's Disease.
    Reed C; Happich M; Raskin J; Tockhorn-Heidenreich A; Belger M
    J Prev Alzheimers Dis; 2019; 6(2):90-99. PubMed ID: 30756115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Awareness disorders in Alzheimer's disease and in mild cognitive impairment].
    Jacus JP; Dupont MP; Herades Y; Pelix C; Large H; Baud M
    Encephale; 2014 Apr; 40(2):180-7. PubMed ID: 24630532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Interspecies Translation Between Alzheimer's Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging.
    Lee MJ; Wang C; Carroll MJ; Brubaker DK; Hyman BT; Lauffenburger DA
    Front Neurosci; 2021; 15():727784. PubMed ID: 34658769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer's disease.
    Jackson HM; Soto I; Graham LC; Carter GW; Howell GR
    BMC Genomics; 2013 Nov; 14():831. PubMed ID: 24274089
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.