BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35535967)

  • 1. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.
    Xu Y; Lv Z; Yao C; Yang D
    Biomater Sci; 2022 Jun; 10(12):3054-3061. PubMed ID: 35535967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications.
    Li C; Wang Y; Li PF; Fu Q
    Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics.
    Lv J; Dong Y; Gu Z; Yang D
    Chemistry; 2020 Nov; 26(64):14512-14524. PubMed ID: 32969061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Biomedical Applications of "Polymer-Like" Nucleic Acids Enzymatically Produced by Rolling Circle Amplification.
    Li J; Lin L; Yu J; Zhai S; Liu G; Tian L
    ACS Appl Bio Mater; 2019 Oct; 2(10):4106-4120. PubMed ID: 35021425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rolling circle amplification (RCA)-based DNA hydrogel.
    Yao C; Zhang R; Tang J; Yang D
    Nat Protoc; 2021 Dec; 16(12):5460-5483. PubMed ID: 34716450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications.
    Gao YP; Huang KJ; Wang FT; Hou YY; Xu J; Li G
    Analyst; 2022 Jul; 147(15):3396-3414. PubMed ID: 35748818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.
    Ali MM; Li F; Zhang Z; Zhang K; Kang DK; Ankrum JA; Le XC; Zhao W
    Chem Soc Rev; 2014 May; 43(10):3324-41. PubMed ID: 24643375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of Rolling Circle Amplification-Produced Ultralong Single-Stranded DNA to Construct Biofunctional DNA Materials.
    Tang J; Liang A; Yao C; Yang D
    Chemistry; 2023 Feb; 29(9):e202202673. PubMed ID: 36263767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification.
    Baker YR; Yuan L; Chen J; Belle R; Carlisle R; El-Sagheer AH; Brown T
    Nucleic Acids Res; 2021 Sep; 49(16):9042-9052. PubMed ID: 34403467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine.
    Yue S; Li Y; Qiao Z; Song W; Bi S
    Trends Biotechnol; 2021 Nov; 39(11):1160-1172. PubMed ID: 33715868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.
    Hong CA; Jang B; Jeong EH; Jeong H; Lee H
    Chem Commun (Camb); 2014 Nov; 50(86):13049-51. PubMed ID: 24967959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Nanostructure as Smart Carriers for Drug Delivery.
    Ouyang X; Chao J; Su S; Fan C
    Methods Mol Biol; 2017; 1500():121-132. PubMed ID: 27813005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z; Zhang H; Wang F; Zhang G; Zhou T; Wang X; Liu S; Liu T
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800263. PubMed ID: 29952041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA).
    Yan J; Hu C; Wang P; Liu R; Zuo X; Liu X; Song S; Fan C; He D; Sun G
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20372-7. PubMed ID: 25323204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification.
    Xue Q; Wang Z; Wang L; Jiang W
    Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.
    Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS
    Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and stretching of rolling circle amplification products in a flow-through system.
    Reiss E; Hölzel R; Bier FF
    Small; 2009 Oct; 5(20):2316-22. PubMed ID: 19492351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.