These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 35535993)
1. Epitaxial Integration of Multiple CdSe Quantum Dots in a Colloidal CdS Nanoplatelet. Chen D; Lei H; Zhu C; Chen X; Tian H; Fang W; Qin H; Peng X J Am Chem Soc; 2022 May; 144(19):8444-8448. PubMed ID: 35535993 [TBL] [Abstract][Full Text] [Related]
2. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Ratnesh RK; Mehata MS Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450 [TBL] [Abstract][Full Text] [Related]
3. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation. Abbasi S; Molaei M; Karimipour M Luminescence; 2017 Nov; 32(7):1137-1144. PubMed ID: 28378916 [TBL] [Abstract][Full Text] [Related]
4. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Goryacheva OA; Wegner KD; Sobolev AM; Häusler I; Gaponik N; Goryacheva IY; Resch-Genger U Anal Bioanal Chem; 2022 Jun; 414(15):4427-4439. PubMed ID: 35303136 [TBL] [Abstract][Full Text] [Related]
5. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. Deka S; Quarta A; Lupo MG; Falqui A; Boninelli S; Giannini C; Morello G; De Giorgi M; Lanzani G; Spinella C; Cingolani R; Pellegrino T; Manna L J Am Chem Soc; 2009 Mar; 131(8):2948-58. PubMed ID: 19206236 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225 [TBL] [Abstract][Full Text] [Related]
7. Surface modified glass substrate for sensing E. coli using highly stable and luminescent CdSe/CdS core shell quantum dots. Hunsur Ravikumar C; R S; Balakrishna RG J Photochem Photobiol B; 2020 Mar; 204():111799. PubMed ID: 32018156 [TBL] [Abstract][Full Text] [Related]
8. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield. Nasilowski M; Spinicelli P; Patriarche G; Dubertret B Nano Lett; 2015 Jun; 15(6):3953-8. PubMed ID: 25990468 [TBL] [Abstract][Full Text] [Related]
9. Role of surface ligands in optical properties of colloidal CdSe/CdS quantum dots. Ning Z; Molnár M; Chen Y; Friberg P; Gan L; Ågren H; Fu Y Phys Chem Chem Phys; 2011 Apr; 13(13):5848-54. PubMed ID: 21327188 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and properties of water-soluble core-shell-shell silica-CdSe/CdS-silica nanoparticles. Lin YW; Liu CW; Chang HT J Nanosci Nanotechnol; 2006 Apr; 6(4):1092-100. PubMed ID: 16736771 [TBL] [Abstract][Full Text] [Related]
11. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
12. Heat-induced transformation of CdSe-CdS-ZnS core-multishell quantum dots by Zn diffusion into inner layers. Yalcin AO; Goris B; van Dijk-Moes RJ; Fan Z; Erdamar AK; Tichelaar FD; Vlugt TJ; Van Tendeloo G; Bals S; Vanmaekelbergh D; Zandbergen HW; van Huis MA Chem Commun (Camb); 2015 Feb; 51(16):3320-3. PubMed ID: 25431813 [TBL] [Abstract][Full Text] [Related]
13. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. Bae WK; Padilha LA; Park YS; McDaniel H; Robel I; Pietryga JM; Klimov VI ACS Nano; 2013 Apr; 7(4):3411-9. PubMed ID: 23521208 [TBL] [Abstract][Full Text] [Related]
14. Covalent Protein Labeling and Improved Single-Molecule Optical Properties of Aqueous CdSe/CdS Quantum Dots. Wichner SM; Mann VR; Powers AS; Segal MA; Mir M; Bandaria JN; DeWitt MA; Darzacq X; Yildiz A; Cohen BE ACS Nano; 2017 Jul; 11(7):6773-6781. PubMed ID: 28618223 [TBL] [Abstract][Full Text] [Related]
15. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. Mahler B; Lequeux N; Dubertret B J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669 [TBL] [Abstract][Full Text] [Related]
16. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots. Singh G; Kumar M; Soni U; Arora V; Bansal V; Gupta D; Bhat M; Dinda AK; Sapra S; Singh H J Nanosci Nanotechnol; 2016 Jan; 16(1):130-43. PubMed ID: 27398438 [TBL] [Abstract][Full Text] [Related]
17. Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties. Adegoke O; Nyokong T; Forbes PB Luminescence; 2016 May; 31(3):694-703. PubMed ID: 26333473 [TBL] [Abstract][Full Text] [Related]
18. Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: validation and comparison. Saran AD; Mehra A; Bellare JR J Colloid Interface Sci; 2012 Jul; 378(1):21-9. PubMed ID: 22578831 [TBL] [Abstract][Full Text] [Related]
19. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique. Zhan HJ; Zhou PJ; Ma R; Liu XJ; He YN; Zhou CY J Fluoresc; 2014 Jan; 24(1):57-65. PubMed ID: 23934265 [TBL] [Abstract][Full Text] [Related]
20. [Study of water-sol core-shell CdSe/CdS quantum dots]. Teng F; Tang AW; Gao YH; Liang CJ; Xu Z; Wang YS Guang Pu Xue Yu Guang Pu Fen Xi; 2005 May; 25(5):651-4. PubMed ID: 16128054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]