BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35536023)

  • 1. Metabolic Synergy between Human Symbionts
    Catlett JL; Carr S; Cashman M; Smith MD; Walter M; Sakkaff Z; Kelley C; Pierobon M; Cohen MB; Buan NR
    Microbiol Spectr; 2022 Jun; 10(3):e0106722. PubMed ID: 35536023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntrophy via Interspecies H
    Ruaud A; Esquivel-Elizondo S; de la Cuesta-Zuluaga J; Waters JL; Angenent LT; Youngblut ND; Ley RE
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut.
    Samuel BS; Hansen EE; Manchester JK; Coutinho PM; Henrissat B; Fulton R; Latreille P; Kim K; Wilson RK; Gordon JI
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10643-8. PubMed ID: 17563350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism.
    Samuel BS; Gordon JI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10011-6. PubMed ID: 16782812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron.
    Catlett JL; Catazaro J; Cashman M; Carr S; Powers R; Cohen MB; Buan NR
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32873608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and culture of Methanobrevibacter smithii by co-culture with hydrogen-producing bacteria on agar plates.
    Traore SI; Khelaifia S; Armstrong N; Lagier JC; Raoult D
    Clin Microbiol Infect; 2019 Dec; 25(12):1561.e1-1561.e5. PubMed ID: 30986553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of Bacteroides thetaiotaomicron, Methanobrevibacter smithii, and Eubacterium rectale interactions in the human gut.
    Adrian MA; Ayati BP; Mangalam AK
    Sci Rep; 2023 Dec; 13(1):21192. PubMed ID: 38040895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins.
    Hansen EE; Lozupone CA; Rey FE; Wu M; Guruge JL; Narra A; Goodfellow J; Zaneveld JR; McDonald DT; Goodrich JA; Heath AC; Knight R; Gordon JI
    Proc Natl Acad Sci U S A; 2011 Mar; 108 Suppl 1(Suppl 1):4599-606. PubMed ID: 21317366
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Wang T; Leibrock N; Plugge CM; Smidt H; Zoetendal EG
    Gut Microbes; 2023 Dec; 15(2):2261784. PubMed ID: 37753963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culturing clinical Methanobrevibacter smithii using GG medium in a minimal anaerobe atmosphere.
    Pilliol V; Guindo CO; Terrer E; Aboudharam G; Drancourt M; Grine G
    J Microbiol Methods; 2023 Apr; 207():106704. PubMed ID: 36907565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Modeling and Bidirectional Culturing of Two Gut Microbes Reveal Cross-Feeding Interactions and Protective Effects on Intestinal Cells.
    Hirmas B; Gasaly N; Orellana G; Vega-Sagardía M; Saa P; Gotteland M; Garrido D
    mSystems; 2022 Oct; 7(5):e0064622. PubMed ID: 36005398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual Metabolic Interactions in Co-cultures of the Intestinal
    Bui TPN; Schols HA; Jonathan M; Stams AJM; de Vos WM; Plugge CM
    Front Microbiol; 2019; 10():2449. PubMed ID: 31736896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteroides thetaiotaomicron.
    Porter NT; Luis AS; Martens EC
    Trends Microbiol; 2018 Nov; 26(11):966-967. PubMed ID: 30193959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutual Exclusion of
    Low A; Lee JKY; Gounot JS; Ravikrishnan A; Ding Y; Saw WY; Tan LWL; Moong DKN; Teo YY; Nagarajan N; Seedorf H
    Microbiol Spectr; 2022 Aug; 10(4):e0084922. PubMed ID: 35699469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41.
    Samuel BS; Shaito A; Motoike T; Rey FE; Backhed F; Manchester JK; Hammer RE; Williams SC; Crowley J; Yanagisawa M; Gordon JI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16767-72. PubMed ID: 18931303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal IgA Regulates Expression of a Fructan Polysaccharide Utilization Locus in Colonizing Gut Commensal Bacteroides thetaiotaomicron.
    Joglekar P; Ding H; Canales-Herrerias P; Pasricha PJ; Sonnenburg JL; Peterson DA
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis.
    Liu B; Garza DR; Gonze D; Krzynowek A; Simoens K; Bernaerts K; Geirnaert A; Faust K
    ISME J; 2023 Nov; 17(11):1940-1952. PubMed ID: 37670028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Campbell A; Gdanetz K; Schmidt AW; Schmidt TM
    Microbiome; 2023 Jun; 11(1):133. PubMed ID: 37322527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteroides thetaiotaomicron, a Model Gastrointestinal Tract Species, Prefers Heme as an Iron Source, Yields Protoporphyrin IX as a Product, and Acts as a Heme Reservoir.
    Meslé MM; Gray CR; Dlakić M; DuBois JL
    Microbiol Spectr; 2023 Mar; 11(2):e0481522. PubMed ID: 36862015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial interaction between the succinate-utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides thetaiotaomicron.
    Ikeyama N; Murakami T; Toyoda A; Mori H; Iino T; Ohkuma M; Sakamoto M
    Microbiologyopen; 2020 Oct; 9(10):e1111. PubMed ID: 32856395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.