These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35536117)

  • 1. Modular Electrode Array for Multi-site Extracellular Recordings from Brains of Freely Moving Rodents.
    Mohapatra AN; Netser S; Wagner S
    Curr Protoc; 2022 May; 2(5):e399. PubMed ID: 35536117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents.
    Zhao Z; Zhu H; Li X; Sun L; He F; Chung JE; Liu DF; Frank L; Luan L; Xie C
    Nat Biomed Eng; 2023 Apr; 7(4):520-532. PubMed ID: 36192597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents.
    Insanally M; Trumpis M; Wang C; Chiang CH; Woods V; Palopoli-Trojani K; Bossi S; Froemke RC; Viventi J
    J Neural Eng; 2016 Apr; 13(2):026030-26030. PubMed ID: 26975462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice.
    Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053
    [No Abstract]   [Full Text] [Related]  

  • 8. [Multi-channel in vivo recording technique: microdrive array fabrication and electrode implantation in mice].
    Ma XY; Zhang YY; Wang LN; Lin LN
    Sheng Li Xue Bao; 2013 Dec; 65(6):637-46. PubMed ID: 24343722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
    Barker DJ; Root DH; Coffey KR; Ma S; West MO
    J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of simple, customised, brain-spanning, multi-channel, linear microelectrode arrays.
    Banstola A; Silva C; Ulrich K; Ruan M; Robertson L; McNaughton N
    J Neurosci Methods; 2021 Jan; 348():109011. PubMed ID: 33249180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protocol to investigate neural coupling of brain oscillations in rodents using in vivo electrophysiological recordings.
    Wang C; Stratton PG; Sah P; Marek R
    STAR Protoc; 2023 Sep; 4(3):102414. PubMed ID: 37436903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays.
    Chung JE; Joo HR; Fan JL; Liu DF; Barnett AH; Chen S; Geaghan-Breiner C; Karlsson MP; Karlsson M; Lee KY; Liang H; Magland JF; Pebbles JA; Tooker AC; Greengard LF; Tolosa VM; Frank LM
    Neuron; 2019 Jan; 101(1):21-31.e5. PubMed ID: 30502044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.
    Pothof F; Bonini L; Lanzilotto M; Livi A; Fogassi L; Orban GA; Paul O; Ruther P
    J Neural Eng; 2016 Aug; 13(4):046006. PubMed ID: 27247248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Parylene-Based Flexible Multi-Electrode Array for Recording From Subcortical Brain Regions From Behaving Rats.
    Xu H; Hirschberg AW; Scholten K; Meng E; Berger TW; Song D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4599-4602. PubMed ID: 30441376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice.
    Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM
    J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice.
    Voigts J; Siegle JH; Pritchett DL; Moore CI
    Front Syst Neurosci; 2013; 7():8. PubMed ID: 23717267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and assembly of an ultra-light motorized microdrive for chronic neural recordings in small animals.
    Otchy TM; Ölveczky BP
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23169237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of microdrive arrays for chronic neural recordings in awake behaving mice.
    Chang EH; Frattini SA; Robbiati S; Huerta PT
    J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings
    Kilias A; Lee YT; Froriep UP; Sielaff C; Moser D; Holzhammer T; Egert U; Fang W; Paul O; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34781276
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.