BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35536230)

  • 1. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility.
    Tamura A; Nishida K; Zhang S; Kang TW; Tonegawa A; Yui N
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2463-2476. PubMed ID: 35536230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Intracellularly Degradable Polyrotaxanes for Therapeutic Applications].
    Tamura A
    Yakugaku Zasshi; 2019; 139(2):143-155. PubMed ID: 30713223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Receptor Binding Affinities and Hepatic Cell Association of
    Ohashi M; Tamura A; Yui N
    Biomacromolecules; 2023 May; 24(5):2327-2341. PubMed ID: 37036902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile
    Tamura A; Nishida K; Yui N
    Sci Technol Adv Mater; 2016; 17(1):361-374. PubMed ID: 27877888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weakly acidic carboxy group-grafted β-cyclodextrin-threaded acid-degradable polyrotaxanes for modulating protein interaction and cellular internalization.
    Zhang S; Tamura A; Yui N
    Sci Technol Adv Mater; 2021; 22(1):494-510. PubMed ID: 34248421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular internalization and gene silencing of siRNA polyplexes by cytocleavable cationic polyrotaxanes with tailored rigid backbones.
    Tamura A; Yui N
    Biomaterials; 2013 Mar; 34(10):2480-91. PubMed ID: 23332177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate impaired autophagic flux in Niemann-Pick type C disease.
    Tamura A; Yui N
    J Biol Chem; 2015 Apr; 290(15):9442-54. PubMed ID: 25713067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-Induced Intracellular Dissociation of β-Cyclodextrin-Threaded Polyrotaxanes Directed toward Attenuating Phototoxicity of Bisretinoids through Promoting Excretion.
    Tamura A; Ohashi M; Nishida K; Yui N
    Mol Pharm; 2017 Dec; 14(12):4714-4724. PubMed ID: 29120644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal-specific cholesterol reduction by biocleavable polyrotaxanes for ameliorating Niemann-Pick type C disease.
    Tamura A; Yui N
    Sci Rep; 2014 Mar; 4():4356. PubMed ID: 24619155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyrotaxane-based systemic delivery of β-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease.
    Tamura A; Yui N
    J Control Release; 2018 Jan; 269():148-158. PubMed ID: 29138063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigating RANKL-induced cholesterol overload in macrophages with β-cyclodextrin-threaded polyrotaxanes suppresses osteoclastogenesis.
    Zhu H; Tamura A; Zhang S; Terauchi M; Yoda T; Yui N
    Biomater Sci; 2022 Sep; 10(18):5230-5242. PubMed ID: 35904082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes.
    Yamashita A; Kanda D; Katoono R; Yui N; Ooya T; Maruyama A; Akita H; Kogure K; Harashima H
    J Control Release; 2008 Oct; 131(2):137-44. PubMed ID: 18700157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions.
    Ohashi M; Tamura A; Yui N
    Langmuir; 2021 Sep; 37(37):11102-11114. PubMed ID: 34478294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 2-hydroxypropyl-β-cyclodextrin/pluronic-based polyrotaxanes via heterogeneous reaction as potential Niemann-Pick type C therapeutics.
    Mondjinou YA; McCauliff LA; Kulkarni A; Paul L; Hyun SH; Zhang Z; Wu Z; Wirth M; Storch J; Thompson DH
    Biomacromolecules; 2013 Dec; 14(12):4189-97. PubMed ID: 24180231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supermolecule-Drug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin.
    Tamura A; Osawa M; Yui N
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides.
    Zhang S; Tamura A; Yui N
    Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylation of Cyclodextrin-Threaded Polyrotaxanes Yields Temperature-Responsive Phase Transition and Coacervate Formation Properties.
    Tonegawa A; Tamura A; Yui N
    Macromol Rapid Commun; 2020 Sep; 41(17):e2000322. PubMed ID: 32767501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Mixed β-Cyclodextrin Ratios on Pluronic Rotaxanation Efficiency and Product Solubility.
    Mondjinou YA; Hyun SH; Xiong M; Collins CJ; Thong PL; Thompson DH
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23831-6. PubMed ID: 26502827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A supramolecular endosomal escape approach for enhancing gene silencing of siRNA using acid-degradable cationic polyrotaxanes.
    Tamura A; Yui N
    J Mater Chem B; 2013 Aug; 1(29):3535-3544. PubMed ID: 32261169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.