These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35536346)

  • 21. Design strategies for the molecular level synthesis of supported catalysts.
    Wegener SL; Marks TJ; Stair PC
    Acc Chem Res; 2012 Feb; 45(2):206-14. PubMed ID: 22004451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reagent-Triggered Isomerization of Fluxional Cluster Catalyst via Dynamic Coupling.
    Guo H; Sautet P; Alexandrova AN
    J Phys Chem Lett; 2020 Apr; 11(8):3089-3094. PubMed ID: 32227852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis.
    Krishna SH; Jones CB; Gounder R
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():115-136. PubMed ID: 33826852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Change of Active Sites of Supported Vanadia Catalysts for Selective Catalytic Reduction of Nitrogen Oxides.
    Xu G; Li H; Yu Y; He H
    Environ Sci Technol; 2022 Mar; 56(6):3710-3718. PubMed ID: 35195409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Versatile Homebuilt Gas Feed and Analysis System for
    Plodinec M; Nerl HC; Farra R; Willinger MG; Stotz E; Schlögl R; Lunkenbein T
    Microsc Microanal; 2020 Apr; 26(2):220-228. PubMed ID: 32115001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Operando chemistry of catalyst surfaces during catalysis.
    Dou J; Sun Z; Opalade AA; Wang N; Fu W; Tao FF
    Chem Soc Rev; 2017 Apr; 46(7):2001-2027. PubMed ID: 28358410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluxional Boron Clusters: From Theory to Reality.
    Pan S; Barroso J; Jalife S; Heine T; Asmis KR; Merino G
    Acc Chem Res; 2019 Sep; 52(9):2732-2744. PubMed ID: 31487150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy.
    Zichittella G; Polyhach Y; Tschaggelar R; Jeschke G; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3596-3602. PubMed ID: 33166088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy.
    Muylaert I; Van Der Voort P
    Phys Chem Chem Phys; 2009 Apr; 11(16):2826-32. PubMed ID: 19421496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing Active Sites in Cu
    Liu Y; Halder A; Seifert S; Marcella N; Vajda S; Frenkel AI
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53363-53374. PubMed ID: 34255469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of methanol oxidation over Au/catalysts using operando IR spectroscopy: determination of the active sites, intermediate/spectator species, and reaction mechanism.
    Rousseau S; Marie O; Bazin P; Daturi M; Verdier S; Harlé V
    J Am Chem Soc; 2010 Aug; 132(31):10832-41. PubMed ID: 20681717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Operando Fourier-transform infrared-mass spectrometry reactor cell setup for heterogeneous catalysis with glovebox transfer process to surface-chemical characterization.
    Watschinger M; Ploner K; Winkler D; Kunze-Liebhäuser J; Klötzer B; Penner S
    Rev Sci Instrum; 2021 Feb; 92(2):024105. PubMed ID: 33648094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors.
    Copéret C
    Acc Chem Res; 2019 Jun; 52(6):1697-1708. PubMed ID: 31150207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moving Frontiers in Transition Metal Catalysis: Synthesis, Characterization and Modeling.
    Sharapa DI; Doronkin DE; Studt F; Grunwaldt JD; Behrens S
    Adv Mater; 2019 Jun; 31(26):e1807381. PubMed ID: 30803078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operando Spectroscopy of Catalysts Exploiting Multi-technique and Modulated Excitation Approaches.
    Buttignol F; Maggiulli L; Kochetygov I; Alxneit I; Ferri D
    Chimia (Aarau); 2024 May; 78(5):313-319. PubMed ID: 38822774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions.
    Hess C
    Chem Soc Rev; 2021 Mar; 50(5):3519-3564. PubMed ID: 33501926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing CO
    Heidary N; Ly KH; Kornienko N
    Nano Lett; 2019 Aug; 19(8):4817-4826. PubMed ID: 31260630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.