BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35536403)

  • 1. Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering emulsions.
    Pan T; Liu C; Wang M; Zhang J
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3829-3836. PubMed ID: 35536403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Antagonism to Enhancement: Triton X-100 Surfactant Affects Phenanthrene Interfacial Biodegradation by Mycobacteria through a Shift in Uptake Mechanisms.
    Wang K; Zhang J; Li M; Zhu S; Pan T
    Langmuir; 2024 May; 40(21):11106-11115. PubMed ID: 38745419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing.
    Guo Z; Li Z; Cen S; Liang N; Muhammad A; Tahir HE; Shi J; Huang X; Zou X
    Carbohydr Polym; 2023 Aug; 313():120764. PubMed ID: 37182940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems.
    Wang M; Liu C; Zhang J; Xiao K; Pan T
    Lett Appl Microbiol; 2022 Dec; 75(6):1515-1525. PubMed ID: 36000244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions: Stabilization mechanism based on noncovalent interaction.
    Sun F; Cheng T; Ren S; Yang B; Liu J; Huang Z; Guo Z; Wang Z
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128381. PubMed ID: 38000596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective pickering emulsifiers based on submicron carboxymethyl cellulose/chitosan polymer particles.
    Mensah EO; Alqubelat RS; Menzorova YA; Minin AS; Mironov MA
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113827. PubMed ID: 38430830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adding nanoparticles to improve emulsion efficiency and enhance microbial degradation in Pickering emulsions.
    Ali DC; Zhang X; Wang Z
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5843-5854. PubMed ID: 37466667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions.
    Liang C; Liu Q; Xu Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20631-9. PubMed ID: 26302364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions.
    Martins D; Estevinho B; Rocha F; Dourado F; Gama M
    Carbohydr Polym; 2020 Feb; 230():115657. PubMed ID: 31887925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.
    Wongkongkatep P; Manopwisedjaroen K; Tiposoth P; Archakunakorn S; Pongtharangkul T; Suphantharika M; Honda K; Hamachi I; Wongkongkatep J
    Langmuir; 2012 Apr; 28(13):5729-36. PubMed ID: 22443382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickering emulsions with chitosan and macroalgal polyphenols stabilized by layer-by-layer electrostatic deposition.
    Meng W; Sun H; Mu T; Garcia-Vaquero M
    Carbohydr Polym; 2023 Jan; 300():120256. PubMed ID: 36372484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes.
    Zhang Y; Yang S; Tang H; Wan S; Qin W; Zeng Q; Huang J; Yu G; Feng Y; Li J
    Carbohydr Polym; 2022 Dec; 297():119904. PubMed ID: 36184125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions.
    Huan Y; Zhang S; Vardhanabhuti B
    J Dairy Sci; 2016 May; 99(5):3305-3315. PubMed ID: 26947286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions.
    Zhao W; Xie H; Zhang X; Wang Z
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2403-2414. PubMed ID: 35352152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleogel Films Through the Pickering Effect of Bacterial Cellulose Nanofibrils Featuring Interfacial Network Stabilization.
    Li Q; Ma Q; Wu Y; Li Y; Li B; Luo X; Liu S
    J Agric Food Chem; 2020 Aug; 68(34):9150-9157. PubMed ID: 32786862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ.
    García-Junco M; De Olmedo E; Ortega-Calvo JJ
    Environ Microbiol; 2001 Sep; 3(9):561-9. PubMed ID: 11683866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan.
    Xie B; Zhang X; Luo X; Wang Y; Li Y; Li B; Liu S
    Food Chem; 2020 Nov; 331():127108. PubMed ID: 32593036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification.
    Liu H; Wang C; Zou S; Wei Z; Tong Z
    Langmuir; 2012 Jul; 28(30):11017-24. PubMed ID: 22762435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions.
    Wang W; Ji S; Xia Q
    Carbohydr Polym; 2024 Jun; 334():122041. PubMed ID: 38553238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of chitosan gel droplets via crosslinking of inverse Pickering emulsifications.
    Zhang Y; Wang X; Xu C; Yan W; Tian Q; Sun Z; Yao H; Gao J
    Carbohydr Polym; 2018 Apr; 186():1-8. PubMed ID: 29455966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.