BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35536545)

  • 1. Persistent spectral simplicial complex-based machine learning for chromosomal structural analysis in cellular differentiation.
    Gong W; Wee J; Wu MC; Sun X; Li C; Xia K
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35536545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hodge theory-based biomolecular data analysis.
    Wei RKJ; Wee J; Laurent VE; Xia K
    Sci Rep; 2022 Jun; 12(1):9699. PubMed ID: 35690623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent Homology for RNA Data Analysis.
    Xia K; Liu X; Wee J
    Methods Mol Biol; 2023; 2627():211-229. PubMed ID: 36959450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction.
    Wee J; Xia K
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent Path-Spectral (PPS) Based Machine Learning for Protein-Ligand Binding Affinity Prediction.
    Liu R; Liu X; Wu J
    J Chem Inf Model; 2023 Feb; 63(3):1066-1075. PubMed ID: 36647267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral detection of simplicial communities via Hodge Laplacians.
    Krishnagopal S; Bianconi G
    Phys Rev E; 2021 Dec; 104(6-1):064303. PubMed ID: 35030957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent spectral based ensemble learning (PerSpect-EL) for protein-protein binding affinity prediction.
    Wee J; Xia K
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weighted simplicial complexes and their representation power of higher-order network data and topology.
    Baccini F; Geraci F; Bianconi G
    Phys Rev E; 2022 Sep; 106(3-1):034319. PubMed ID: 36266916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
    Nagano T; Lubling Y; Stevens TJ; Schoenfelder S; Yaffe E; Dean W; Laue ED; Tanay A; Fraser P
    Nature; 2013 Oct; 502(7469):59-64. PubMed ID: 24067610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent spectral graph.
    Wang R; Nguyen DD; Wei GW
    Int J Numer Method Biomed Eng; 2020 Sep; 36(9):e3376. PubMed ID: 32515170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecular Topology: Modelling and Analysis.
    Liu J; Xia KL; Wu J; Yau SS; Wei GW
    Acta Math Sin Engl Ser; 2022; 38(10):1901-1938. PubMed ID: 36407804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    PLoS Comput Biol; 2022 Apr; 18(4):e1009943. PubMed ID: 35385478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian inference of spatial organizations of chromosomes.
    Hu M; Deng K; Qin Z; Dixon J; Selvaraj S; Fang J; Ren B; Liu JS
    PLoS Comput Biol; 2013; 9(1):e1002893. PubMed ID: 23382666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.