BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35536545)

  • 21. [Advances in three-dimensional genomics].
    Zhang F; Shen Z; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2791-2812. PubMed ID: 33398973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Random walks on simplicial complexes and harmonics.
    Mukherjee S; Steenbergen J
    Random Struct Algorithms; 2016 Sep; 49(2):379-405. PubMed ID: 28303080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clustering-independent analysis of genomic data using spectral simplicial theory.
    Govek KW; Yamajala VS; Camara PG
    PLoS Comput Biol; 2019 Nov; 15(11):e1007509. PubMed ID: 31756191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D chromosome modeling with semi-definite programming and Hi-C data.
    Zhang Z; Li G; Toh KC; Sung WK
    J Comput Biol; 2013 Nov; 20(11):831-46. PubMed ID: 24195706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes.
    Courtney OT; Bianconi G
    Phys Rev E; 2016 Jun; 93(6):062311. PubMed ID: 27415284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model comparison via simplicial complexes and persistent homology.
    Vittadello ST; Stumpf MPH
    R Soc Open Sci; 2021 Oct; 8(10):211361. PubMed ID: 34659787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS.
    Wei X; Wei GW
    Found Data Sci; 2021 Dec; 3(4):677-700. PubMed ID: 35822080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein-Ligand Binding Affinity Prediction.
    Wee J; Xia K
    J Chem Inf Model; 2021 Apr; 61(4):1617-1626. PubMed ID: 33724038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosome conformation capture technologies and their impact in understanding genome function.
    Sati S; Cavalli G
    Chromosoma; 2017 Feb; 126(1):33-44. PubMed ID: 27130552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction.
    Meng Z; Xia K
    Sci Adv; 2021 May; 7(19):. PubMed ID: 33962954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis.
    Hong P; Jiang H; Xu W; Lin D; Xu Q; Cao G; Li G
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Balanced Hodge Laplacians optimize consensus dynamics over simplicial complexes.
    Ziegler C; Skardal PS; Dutta H; Taylor D
    Chaos; 2022 Feb; 32(2):023128. PubMed ID: 35232052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HiC1Dmetrics: framework to extract various one-dimensional features from chromosome structure data.
    Wang J; Nakato R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering 3D Organization of Chromosomes Using Hi-C Data.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():389-401. PubMed ID: 30109620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Massively multiplex single-cell Hi-C.
    Ramani V; Deng X; Qiu R; Gunderson KL; Steemers FJ; Disteche CM; Noble WS; Duan Z; Shendure J
    Nat Methods; 2017 Mar; 14(3):263-266. PubMed ID: 28135255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CBCR: A Curriculum Based Strategy For Chromosome Reconstruction.
    Hovenga V; Oluwadare O
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33923653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.