These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 35536609)
1. Small and intermediate size structural RNAs in the unicellular parasite Li Y; Baptista RP; Mei X; Kissinger JC Microb Genom; 2022 May; 8(5):. PubMed ID: 35536609 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Long Non-Coding RNA in Li Y; Baptista RP; Sateriale A; Striepen B; Kissinger JC Front Cell Infect Microbiol; 2020; 10():608298. PubMed ID: 33520737 [No Abstract] [Full Text] [Related]
3. Deep profiling of the novel intermediate-size noncoding RNAs in intraerythrocytic Plasmodium falciparum. Wei C; Xiao T; Zhang P; Wang Z; Chen X; Zhang L; Yao M; Chen R; Wang H PLoS One; 2014; 9(4):e92946. PubMed ID: 24713982 [TBL] [Abstract][Full Text] [Related]
4. A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa. Liu TT; Zhu D; Chen W; Deng W; He H; He G; Bai B; Qi Y; Chen R; Deng XW Mol Plant; 2013 May; 6(3):830-46. PubMed ID: 22986792 [TBL] [Abstract][Full Text] [Related]
5. A comparative genome-wide study of ncRNAs in trypanosomatids. Doniger T; Katz R; Wachtel C; Michaeli S; Unger R BMC Genomics; 2010 Nov; 11():615. PubMed ID: 21050447 [TBL] [Abstract][Full Text] [Related]
6. Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs. Zhang Y; Liu J; Jia C; Li T; Wu R; Wang J; Chen Y; Zou X; Chen R; Wang XJ; Zhu D BMC Genomics; 2010 Jan; 11():61. PubMed ID: 20100322 [TBL] [Abstract][Full Text] [Related]
7. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788 [TBL] [Abstract][Full Text] [Related]
8. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Li D; Wang Y; Zhang K; Jiao Z; Zhu X; Skogerboe G; Guo X; Chinnusamy V; Bi L; Huang Y; Dong S; Chen R; Kan Y Nucleic Acids Res; 2011 May; 39(9):3792-805. PubMed ID: 21227919 [TBL] [Abstract][Full Text] [Related]
9. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Snelling WJ; Lin Q; Moore JE; Millar BC; Tosini F; Pozio E; Dooley JS; Lowery CJ Mol Cell Proteomics; 2007 Feb; 6(2):346-55. PubMed ID: 17124246 [TBL] [Abstract][Full Text] [Related]
10. Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum. John A; M Bader S; Madiedo Soler N; Wiradiputri K; Tichkule S; Smyth ST; Ralph SA; Jex AR; Scott NE; Tonkin CJ; Goddard-Borger ED J Biol Chem; 2023 Mar; 299(3):103006. PubMed ID: 36775128 [TBL] [Abstract][Full Text] [Related]
12. Fibrillarin RNA methylase is an interacting protein of Cryptosporidium parvum calmodulin-like protein (CpCML). Sun T; Chen Y; Mi R; Gong H; Zhou S; Han X; Huang Y; Chen Z Microb Pathog; 2022 Sep; 170():105679. PubMed ID: 35843442 [TBL] [Abstract][Full Text] [Related]
13. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum. Lai P; Yang X; Li YH; Yin YL; Yao Q; Huang S; Fan YY; Song JK; Zhao GH Parasitol Res; 2023 Apr; 122(4):989-996. PubMed ID: 36879147 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of Cryptosporidium isolates from diarrheal dairy calves in France. Mammeri M; Chevillot A; Chenafi I; Thomas M; Julien C; Vallée I; Polack B; Follet J; Adjou KT Vet Parasitol Reg Stud Reports; 2019 Dec; 18():100323. PubMed ID: 31796198 [TBL] [Abstract][Full Text] [Related]
15. Systematic identification and characterization of chicken (Gallus gallus) ncRNAs. Zhang Y; Wang J; Huang S; Zhu X; Liu J; Yang N; Song D; Wu R; Deng W; Skogerbø G; Wang XJ; Chen R; Zhu D Nucleic Acids Res; 2009 Oct; 37(19):6562-74. PubMed ID: 19720738 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Putignani L; Tait A; Smith HV; Horner D; Tovar J; Tetley L; Wastling JM Parasitology; 2004 Jul; 129(Pt 1):1-18. PubMed ID: 15267107 [TBL] [Abstract][Full Text] [Related]
17. The unusual architecture and predicted function of the mitochondrion organelle in Cryptosporidium parvum and hominis species: the strong paradigm of the structure-function relationship. Putignani L Parassitologia; 2005 Jun; 47(2):217-25. PubMed ID: 16252476 [TBL] [Abstract][Full Text] [Related]
19. A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum. Choudhary HH; Nava MG; Gartlan BE; Rose S; Vinayak S mBio; 2020 Aug; 11(4):. PubMed ID: 32843543 [No Abstract] [Full Text] [Related]
20. Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite. Edwinson A; Widmer G; McEvoy J Int J Parasitol; 2016 Jan; 46(1):67-74. PubMed ID: 26432292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]