These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 35536688)

  • 1. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding.
    Khan MHU; Wang S; Wang J; Ahmar S; Saeed S; Khan SU; Xu X; Chen H; Bhat JA; Feng X
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change challenges plant breeding.
    Xiong W; Reynolds M; Xu Y
    Curr Opin Plant Biol; 2022 Dec; 70():102308. PubMed ID: 36279790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding to adapt agriculture to climate change: affordable phenotyping solutions.
    Araus JL; Kefauver SC
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):237-247. PubMed ID: 29853283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals.
    Sinha D; Maurya AK; Abdi G; Majeed M; Agarwal R; Mukherjee R; Ganguly S; Aziz R; Bhatia M; Majgaonkar A; Seal S; Das M; Banerjee S; Chowdhury S; Adeyemi SB; Chen JT
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field phenotyping for African crops: overview and perspectives.
    Cudjoe DK; Virlet N; Castle M; Riche AB; Mhada M; Waine TW; Mohareb F; Hawkesford MJ
    Front Plant Sci; 2023; 14():1219673. PubMed ID: 37860243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crop adaptation to climate change: An evolutionary perspective.
    Gao L; Kantar MB; Moxley D; Ortiz-Barrientos D; Rieseberg LH
    Mol Plant; 2023 Oct; 16(10):1518-1546. PubMed ID: 37515323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can genomics deliver climate-change ready crops?
    Varshney RK; Singh VK; Kumar A; Powell W; Sorrells ME
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):205-211. PubMed ID: 29685733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breeding crops by design for future agriculture.
    Li C
    J Zhejiang Univ Sci B; 2020 Jun; 21(6):423-425. PubMed ID: 32478489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollinator-assisted plant phenotyping, selection, and breeding for crop resilience to abiotic stresses.
    Pérez-Alfocea F; Borghi M; Guerrero JJ; Jiménez AR; Jiménez-Gómez JM; Fernie AR; Bartomeus I
    Plant J; 2024 Jul; 119(1):56-64. PubMed ID: 38581375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.